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1 Unsteady convective transport

The proposed problem is to solve the propagation of a steep front as presented in
Equation 2.1 via three different methods, namely the Crank Nicolson, the Lax-Wendroff
and the Third order Taylor-Galerking (T'G3) method.
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The convection velocity takes the value a = 1 and the space and time discretization
are given by Az = 0.02 and At = 0.015. Thus, the Courant number can be calculated
as described in Equation 1.2.
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This result already points out that the Lax-Wendroff method can be subject to insta-
bilities, since it’s conditionally stable for C? < 1/3. On the other hand, the TG3 will be
stable, for it’s condition states C? < 1. It’s also worth mentioning that the Crank Nicol-
son method is unconditionally stable. Given these remarks, the lumped-mass variation
of the methods were also implemented due to their greater stability range [1].
The results for the Crank Nicolson method are presented on Figure 1.1.
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Figure 1.1: Crank Nicolson method at t = 0.6
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Figure 1.2: Lax-Wendroff method at t = 0.6

As mentioned before, the Crank Nicolson method is unconditionally stable and, thus,
the lumped mass matrix adds no benefit to the solution. In fact, it lowers accuracy due
to it’s non consistent formulation, as we can see comparing Figures 1.1a and 1.1b. In
general, though, the method performs poorly, pointing to the need for a higher order
approximation.

The results for the Lax-Wendroff method are given on Figure 1.2. As expected, the
Lax-Wendroff method is severely unstable for the Courant number considered, yield-
ing useless results. However, using the lumped mass matrix was effective in avoiding
oscillations and provided a somewhat acceptable result.
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Figure 1.3: Third order Taylor-Galerkin method at ¢ = 0.6

Finally, the results for the TG3 method are given on Figure 1.3. Being withing it’s
stability condition and having a higher order approximation in time than the other
methods, the TG3 method captures well the convection of the steep front.



2 Burger’s equation

The Burger’s Equation (2.1) can be solved via three different schemes, namely the Ex-
plicit (Forward Euler), the Implicit Picard’s method and the implicit Newton-Raphson’s
method. The proposed problem is defined on the [0, 4] domain and it’s initial condition
is depicted on Figure 2.1.

ug +uu, =0
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Figure 2.1: Initial condition (¢ = 0)

Such initial conditions generate discontinuous solutions, requiring the usage of the
vanishing viscosity approach. A viscosity is added to Equation 2.1 as seen on Equation

2.2.

Uy + ty, = €Uyy (2.2)

The result is, then, acquired as the viscosity tends to zero.
After the Galerkin discretization the Burger’s equation can be written as:

AU
M=+ C(U)U + KU =0 (2.3)

The Newton-Raphson method consists of solving the equation f(U™"!) = 0 every
time step, where f(U) is giving by:



f(U) = (M + AtC(U) + eAtK)U — MU™ (2.4)

Then, an iteration is made starting from the previous time-step U™ = U™ until it
converges according to a specified tolerance (0,5 - 107°) using the following expression:

gt = Ut - g o fup) (25)

where J = % is the jacobian.
when the iteration U, ;;jf is within the tolerance in comparison to the previous value,
the program has found the solution for the given time step and starts the calculation of
the following one.
The results for all methods are presented on Figure 2.2, followed by a comparison of

all methods on the last time-step on Figure 2.3.
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Figure 2.2: Solution for each scheme
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Figure 2.3: Comparison at final time-step (¢ = 4)

As we can see all methods perform similarly for the given conditions of discretization,
time-step and tolerance. However, the Newton-Raphson’s method has a quadratic con-
vergence as opposed to a linear convergence of the Picard’s method, which might play
a significant role on computational cost when requiring the same accuracy.
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