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1 Stokes problem

1.1 Governing equations and stabilization technique

Incompressible flows in which advective inertial forces are small compared with viscous forces,
i.e. Reynolds number is low, are governed by Stokes equations:{

−ν∇2v +∇p = b in Ω

∇ · v = 0 in Ω

This system of PDE’s can be discretized using a Galerkin formulation and resulting in the
following linear system of equations:(

K GT

−G 0

)(
v
p

)
=

(
f
h

)
Existence of an smooth and unique solution requires the finite elements used for the discretiza-

tions to satisfy the so-called LBB condition. This condition states that velocity and pressure cannot
be chosen arbitrarily, but instead a link between them is necessary. Otherwise, although a conver-
gent velocity field might be obtained, the pressure could present with spurious and oscillatory
results.

Even though several elements can be used to solve the Stokes problem, some of the elements
satisfy the LBB conditions and others do not (see Figure (1))

Fig. 1 – Example of 2D stable (upper row) and unstable (lower row) velocity and pressure elements

In analogy to the convection-diffusion problem, stabilization techniques can be used for unstable
elements. An implementation of the SUPG stabilization technique for the Stokes problem results
in the following stabilized system of equations:(

K + K̄ GT + ḠT

−G + Ḡ 0 + L̄

)(
v
p

)
=

(
f + f̄w
h + f̄q

)
where the extra-terms correspond to the SUPG added matrices, whose mathematical definitions
can be found in specialized literature.
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1.2 Implementation of the stabilization technique

The initial given code had a fully-operational implementation of the Galerkin formulation for a
classical cavity problem, in which, a confined incompressible isothermal flow is located in a square
lid-driven cavity (see Figure (2)). The lid can move with a velocity 1, while the rest of the sides
are fixed. Considering that the two upper corners belong to the fixed vertical walls causes the
introduction of singularities in the pressure field as it will be noticeable later on. Moreover, the
lower part of the boundary is prescribed with zero pressure field.

Fig. 2 – Cavity problem: problem statement and boundary conditions

The code allows the user to choose quadrilateral and triangular elements with linear and
quadratic interpolations for the pressure and velocity fields.

It is worth mentioning that all the solutions presented in this report were computed using a
structured 10x10 mesh for both the pressure and velocity fields. The discretized domains in the
case of P2P1 elements are depicted in Figure (3).

(a) (b)

Fig. 3 – Discretization for the velocity (a) and (b) for elements P2P1
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As expected, for elements Q2Q1 and P2P1 the solution is stable and no oscillations are present
in the results (see Figure (4) and Figure (5)).

(a) (b)

Fig. 4 – Streamlines (a) and pressure field (b) obtained using P2P1 elements

(a) (b)

Fig. 5 – Streamlines (a) and pressure field (b) obtained using Q2Q1 elements

On the other hand, solutions computed using unstable elements are spurious with significant
instabilities in the pressure field. For instance, Figure (6) shows the results computed using Q1Q1
elements. Moreover, the streamlines and pressure fields obtained with P1P1 elements are shown in
Figure (7).

Using the stabilization technique introduced in the previous section, the objective of the present
work was to code a SUPG stabilization for unstable elements with linear interpolations. Firstly, since
the elements considered have linear interpolation, the only non-zero stabilizing matricial expressions
of the technique will be L̄ and f̄q.

3



(a) (b)

Fig. 6 – Streamlines (a) and pressure field (b) obtained using Q1Q1 elements

(a) (b)

Fig. 7 – Streamlines (a) and pressure field (b) obtained using P1P1 elements

4



Thus, given the mathematical definition of L̄

L̄ =
∑
e

∫
Ωe

τ1(∇q) · (∇p)dΩe

for a 2D problem the following transformation can be done:

(∇q) · (∇p) =
[

∂q
∂x

∂q
∂y

] [ ∂p
∂x
∂p
∂y

]
Considering the discretization of the pressure field, the previous equation becomes:

∂p

∂x
=
∂N1

∂x
p1 +

∂N2

∂x
p2 + ...

=
[

∂N1

∂x
∂N2

∂x
... ∂Nm

∂x

] [
p1 p2 ... pm

]
in which the first vector on the left is defined within the program as vector nx whereas the second
one is the vector of unknowns nodal values p. Thus, the dot product of the gradients yields:

(∇q) · (∇p) = (nxq)T (nxp) + (nyq)T (nyp)

Since the weak formulation holds for any arbitrary test function q, the expression becomes:

(∇q) · (∇p) = (nx
Tnx + ny

Tny)p

Similarly, for the vector f̄q the following expression is valid:

(∇q)(−f) = −
[

∂q
∂x

∂q
∂y

] [ f1

f2

]
= −

[ ∂N1

∂x
∂N2

∂x
... ∂Nm

∂x

∂N1

∂y
∂N2

∂y
... ∂Nm

∂y

][
f1

f2

]

where the first matrix on the left can be defined using the program’s notations as [nx; ny]T .
As a result, the stabilizing terms L̄ and f̄q can be coded as follows:

1 Le = Le + tau1 ∗(nx ’∗ nx+ny ’∗ ny )∗dvolu ;
2 f q e = f q e − tau1 ∗ ( [ nx ; ny ] ’∗ f i g a u s )∗dvolu ;

Based on the previously derived expressions, the stabilization technique was introduced by
creating an additional function StokesSystemStable.m which is used when linear unstable elements
are chosen. The structure of the code is similar to the StokesSystem.m original program with
additional lines for the new matricial stabilizing expressions.

Using this implementation, the solutions obtained with Q1Q1 and P1P1 elements are stable
producing reliable results (see Figures (8) and (9)).
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(a) (b)

Fig. 8 – Streamlines (a) and pressure field (b) obtained using Q1Q1 stabilized elements

(a) (b)

Fig. 9 – Streamlines (a) and pressure field (b) obtained using stabilized P1P1 elements
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2 Navier-Stokes problem

2.1 Governing equations

Viscous fluid phenomena where inertial forces become important cannot longer by modeled
using Stokes equations. Instead, the inertial forces are driven by pressure and viscous terms and
the phenomena can be mathematically described using the so-called Navier Stokes equations:

−ν∇2v + (v · ∇)v +∇p = b in Ω

∇ · v = 0 in Ω

v = vD on ΓD

n · σ = t on ΓN

The stationary Navier-Stokes solution can be entirely characterized by the Reynolds Number

Re =
VrefLref

ν
.

A Galerkin formulation of the Navier-Stokes equation allows for the problem to be reduced to
the following system of equations:(

K + C(v) GT

G 0

)(
v
p

)
=

(
f
0

)
which is by definition a non-linear system of equations that requires the use of iterative techniques
such as Picard’s or Newton-Raphson.

2.2 Convection matrix

The lid-driven cavity problem (see Figure (2)) introduced in the previous section is once again
analyzed and solved, but in this case considering non-negligible inertial forces.

Since the solution is entirely defined by the Reynolds number and the reference velocity and
length are given by the boundary condition (Vref = 1) and domain dimension (Lref = 1), any
change in the Reynolds numbers is a direct consequence of an increase or decrease of the viscous
forces through the viscosity parameter ν.

To solve this problem, firstly the code for the convection matrix C(v) needed to be written.
Thus, considering the definition of the convection matrix:

[C(vh)]ij =
(
Ni,

(( n∑
j=1

vjNj(x)
)
· ∇
)
,vh
)

and the given notations used within the program, the implementation for the element convection
matrix can be written as follows:

1 v i gaus = N ig∗u e ;
2 Ce = Ce + Ngp ’ ∗ ( v i gaus (1 ) ∗Nx+v igaus (2 ) ∗Ny)∗dvolu ;

As a result, the convection matrix is computed using a newly written script called Convection-
Matrix.m that is embedded into the main body of the program.
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Using this implementation and since Picard’s method was initially given, solutions for different
Reynolds number can be computed. Figures (10) shows the velocity streamlines obtained for three
different Reynolds numbers using Q2Q2 elements.

(a) Re = 1 (b) Re = 10

(c) Re = 100 (d) Re = 1000

Fig. 10 – Streamlines solutions for different Reynolds numbers using Q2Q2 elements with Picard’s
method

As it can be seen in the figures above, for low Reynolds numbers the solution is very close to the
one obtained using the Stokes equations. On the other hand, as Reynolds number increases, the
main vortex of the solution drifts and its position gets closer to the geometric center of the domain.
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2.3 Picard and Newton-Raphson methods for non-linear system of equa-
tions

After implementing the computation for the convection matrix, as shown above, the non-linear
system of equations can be solved using a Picard’s method. For this method, having an initial
solution guess x0, the solution after k iterations can be computed by solving the linear system:

A(xk)xk+1 = b(xk)

Thus, the method requires the solution of one linear system of equations per iteration and the
convergence rate is usually linear.

An alternative methodology to solve the Navier-Stokes non-linear system of equations is the
Newton-Raphson method. This method solves an equation of the form r(x) = 0 where, for the
Navier-Stokes system, r(x) is defined as follows:

r =

[ (
K + C(v)

)
v + GTp− f

Gv

]
Thus, the solution after k iterations can be found by solving the linear system:{

J(xk)∆xk+1 = −r(xk)

xk+1 = xk + ∆xk+1

where J(x) is called the Jacobian matrix and it is mathematically defined as:

J(x) =


∂r1

∂v

∂r1

∂p
∂r2

∂v

∂r2

∂p


Even though the expressions

∂r1

∂p
,
∂r2

∂v
, and

∂r2

∂p
are trivial, the term

∂r1

∂v
requires more work.

Considering the original bilinear form from which the matrix C(v) comes from, allows us to find

the expression
∂r1

∂v
as follows:

∂r1

∂v
= K +

(
Ni, (v · ∇),Nj

)
︸ ︷︷ ︸

C2(v)

+
(
Ni, (Nj · ∇),v

)
︸ ︷︷ ︸

C1(v)

For the initial given code, it can be noticed that the firm matrix C1(v) matches the definition
of the convection matrix C(v), whereas, for the second term C2(v), the following can be deduced:

w · (v · ∇)v = w
[
vx vy

] [ ∂
∂x

∂
∂y

] [
vx vy

]
= w

 ∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

 [ vx vy
]
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which can be differentiated with respect to v and using the notations originally given in the code,
can be expressed as:

1 Ce2 = Ce2 + Ngp ’ ∗ ( [ nx ; ny ]∗ u e ) ’∗Ngp∗dvolu ;

As a result, the
∂r1

∂v
can be found by adding the three expressions for K, C1(v), and C2(v).

Lastly, to implement the Newton-Raphson methodology, a new function script ConvectionMa-
trixNR.m was created that computes matrices C1(v) and C2(v). Subsequently, the body of the
algorithm for the Newton-Raphson method was introduced as follows:

1 [ C1 , C2 ] = ConvectionMatrixNR (X,T, re ferenceElement , ve l o ) ; %Newly c rea ted
func t i on computes C 1 and C 2

2 Cred = C1( dofUnk , dofUnk ) ; % Reduced matrix c o n s i d e r i n g BC’ s
3 Cred2= C2( dofUnk , dofUnk ) ; % Reduced matrix c o n s i d e r i n g BC’ s
4

5 %Reduced system o f equat ions
6 Atot = A;
7 Atot ( 1 : nunkV , 1 : nunkV) = A( 1 : nunkV , 1 : nunkV) + Cred ;
8 btot = [ f r e d − C1( dofUnk , dofDir )∗ va lDi r ; z e r o s (nunkP , 1 ) ] ;
9

10 %Jacobian matrix
11 J = A;
12 J ( 1 : nunkV , 1 : nunkV) = A( 1 : nunkV , 1 : nunkV) + Cred + Cred2 ;
13

14 %Computation o f r ( x )
15 r e s = Atot∗ s o l 0 − btot ;
16

17 % Computation o f v e l o c i t y and pr e s su r e increment
18 s o l I n c = −J\ r e s ;

Correspondingly the final code was written and the results of the cavity problem with Reynolds
number Re = 500 using Q2Q1 elements are shown in Figure (11).

For the same problem (Re = 500), the convergence rate curves for Picard’s and Newton-Raphson
methods are depicted in Figure (12). As it can be seen, the Newton-Raphson reaches the sought
minimum error after 8 iterations with a quadratic law. On the other hand, Picard’s method requires
40 iterations to achieve the same error value converging, conversely, in a linear pattern.
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(a) (b)

Fig. 11 – Streamlines (a) and pressure field (b) obtained using Q2Q1 elements with a Newton-
Raphson method

(a) (b)

Fig. 12 – Convergence rate using Picard’s (a) and Newton Raphson (b) methods
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