

FINITE ELEMENTS
IN FLUIDS

Homework 4

 Stokes & Navier-Stokes problem

Author: Cristina García Albela
MsC in Computational Mechanics

STOKES EQUATIONS – CAVITY FLOW PROBLEM

Stokes equations are obtained when Navier – Stokes is applied to a highly viscous flow; thus, the
convective terms can be neglected if they are compared with the dominant viscous terms. If time
dependency is neglected too, steady Stokes problem can be studied formulated in terms of velocity
and pressure.

−𝜈∇$𝑣 + ∇𝑝 = 𝑏								𝑖𝑛	Ω
∇ ∙ 𝑣 = 0																								𝑖𝑛	Ω
𝑣 = 𝑣0																			𝑜𝑛	𝜕Ω

Cavity problem is going to be studied, being one of the most typical examples for incompressible
problems. It models a plane flow of an isothermal fluid in a square lid-driven cavity where Dirichlet
BC are defined in each side, implying that pressure is known up to a constant.
Talking about velocity, the upper side moves in its own plane with unit speed, whereas the other
remains fixed; appearing a discontinuity in the upper corner nodes (𝑣3 = 1 and 𝑣3 = 0). In terms
of pressure, at any arbitrary point the left lower corner of the cavity will have 𝑝 = 0 value prescribed
and a singulary in the upper corners is introduced by velocity discontinuity.

Discretization of Stokes equations

Applying WRM to Stokes equations and after some algebra (integration by parts and boundary
conditions), Stokes equations can be written as

6 (∇𝒘): (𝜈∇𝒗)𝑑Ω −6 (∇ ∙ 𝒘)𝑝𝑑Ω
<

= 6 𝒘 ∙ 𝒇𝑑Ω
<<

6 𝑞∇ ∙ 𝒗𝑑Ω
<

= 0

where 𝒘 and 𝑞 are the weighted functions.
Writing the approximation for velocity and pressure together with Galerkin formulation for their
weighted functions

𝒗(𝑥) ≅ 𝒗𝒉(𝑥) =B𝑣C𝑁C(𝑥)																		𝑝(𝑥) ≅ 𝑝E(𝑥) =B𝑝C𝑁FG (𝑥)
H

CI3

	
H

CI3

𝑤(𝑥) ≅ 𝑤E(𝑥) =B𝑁K(𝑥)𝑤K																										𝑞 ≅ 𝑞E =B𝑁LM(𝑥)𝑞K

H

KI3

H

KI3

Introducing these expressions in the previous equation and after some algebra the matrix problem
governing Stokes flow is derived, obtaining the following matrix system of equations

N𝑲 𝑮𝑻
𝑮 𝟎

S T
𝒗
𝒑V = T𝒇

𝟎
V

Implemented the problem in a Matlab code (Figure 1), four different finite element spaces are
going to be solved using a 10 elements mesh in each direction and viscosity equal to the unity.

LBB Condition

Defining the positive symmetric matrix (𝑮𝑻𝑲W𝟏𝑮), it is positive define if ker𝑮 = {𝟎}. If this is the
case the velocity and pressure fields obtained solving the system will be unique; if not, the velocity
filed might be stable and convergent, but pressure field will be no stable, presenting oscillatory
results. To guarantee the stability of the method LBB compatibility condition has been determined.
The LBB condition states that velocity and pressure must have a link between them instead of being
chosen arbitrary. To obtain uniquely v and p from the system of equations, a necessary but not
sufficient condition is that

𝑑𝑖𝑚𝑄E ≤ 𝑑𝑖𝑚𝑉E

If velocity and pressure discrete spaces satisfy the LBB condition ker𝑮 = {𝟎}, guaranteeing the
existence and uniqueness of the solution.

Stabilization of Stokes problem

In order to obtain better results using velocity – pressure pairs which doesn’t satisfy LBB condition
(P1P1 and Q1Q1) a stabilization technique, in this case GLS formulation, will be introduced to
solve incompressible flow problems.
Now the problem can be written as

6 T
𝒘
𝑞V ∙ (𝓛(𝒗, 𝑝) − 𝑭)𝑑Ω +B6 T

𝜏3
𝜏$V𝓛

(𝒘, 𝑞) ∙
<fg<

(𝓛(𝒗, 𝑝) − 𝑭)𝑑Ω = 𝟎

𝜏3 = 𝛼i
ℎ$

4𝜈
				 						𝜏$ = 0							(𝛼i =

1
3
	𝑓𝑜𝑟	𝑙𝑖𝑛𝑒𝑎𝑟	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)

Working with linear elements the second order derivatives vanish so that the GLS does not affect
the momentum equation at all together with 𝜏$ value, the GLS formulation reduces to

N𝑲 𝑮𝑻
𝑮 𝑳

S T
𝒗
𝒑V = N

𝒇
𝒇𝒒
S

Implemented the new system of equations in a Matlab code (Figure 2 & 3), P1P1 and Q1Q1
elements discretization are going to be solved using a 10 and 30 elements mesh in each direction
and viscosity equal to the unity.

 Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;
 Ge = Ge - NP_ig'*dN*dvolu;
 x_ig = N_ig(1:ngeom)*Xe;
 f_igaus = SourceTerm(x_ig);
 fe = fe + Ngp'*f_igaus*dvolu;

Figure 1. Element matrix components definition

 K = zeros(ndofV,ndofV);
 G = zeros(ndofP,ndofV);
 L = zeros(ndofP,ndofP);
 f = zeros(ndofV,1);
 fq = zeros(ndofP,1);

Figure 2. Element matrix components

 Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;
 Ge = Ge - NP_ig'*dN*dvolu;
 Le = Le + (nx'*nx + ny'*ny)*dvolu;
 x_ig = N_ig(1:ngeom)*Xe;
 f_igaus = SourceTerm(x_ig);
 fe = fe + Ngp'*f_igaus*dvolu;
 fqe = fqe - [nx;ny]'*f_igaus*dvolu;

Figure 3. Element matrix components definition

Results and conclusions – Non stabilization term

Starting with pressure field results, as expected those discretised velocity-pressure spaces that do not
satisfy the LBB condition (P1P1 and Q1Q1) present oscillations, which are stronger in the square
corners. On the other hand, P2P1 and Q2Q1 discretization achieve stable results and show clearly
the singularity in upper side corners.

Figure 4. Pressure field for P1P1 elements Figure 5. Pressure field for Q1Q1 elements

Figure 6. Pressure field for P2P1 elements Figure 7. Pressure field for Q2P1 elements

Figure 8. Streamlines Q1Q1 elements Figure 9. Streamlines Q2Q1 elements

Comparing streamlines of Q1Q1 and Q2Q1 elements, it can be seen how the first case that does
not satisfy LBB condition is able to reproduce in a reasonable way streamlines and the symmetry
condition with respect to the vertical centre line.

Results and conclusions – GLS formulation

Taking into account the previous results, focusing in pressure the introduction of GLS formulation
allows to achieve stable and better results for pressure field with those velocity - pressure pairs that
don’t satisfy LBB condition. At 10 element meshes (Figure 10 & 11) it can be seen that the
singularity of upper corners affects more to the hole domain solution than at 10 elements Q2Q1
and P2P1 meshes (Figure 6 & 7). If the mesh is refined until 30 elements per direction, such an
improvement in the results is obtained, having in mind the higher computational cost introduced
non only by GLS but also by a smoother mesh.
Thus, it is prove that with help of stabilization techniques those discretization that are not stable
working with classical Galerkin can be used in incompressible flow problems.

Figure 10. Pressure field for P1P1 with 10 elements Figure 11. Pressure field for Q1Q1 with 10 elements

Figure 12. Pressure field for P1P1 with 30 elements Figure 13. Pressure field for Q1Q1 with 30 elements

Navier – Stokes Problem

Navier – Stokes equation govern steady or transient, viscous incompressible flows. Here the steady
case is going to be studied, so that the strong form is stated as

−𝜈∇$𝑣 + (𝑣 ∙ ∇)𝑣 + ∇𝑝 = 𝑏								𝑖𝑛	Ω
∇ ∙ 𝑣 = 0 𝑖𝑛	Ω
𝑣 = 𝑣2																																												𝑜𝑛	𝜕Ω

Compared with the previous studied case, Stokes problem, it can be seen the presence of the non
linear convective term, which is going to introduce some difficulties in the numerical simulation.
Those will be overcome implementing Picard and Newton – Raphson methods, as in Burgers
problem, with the main difference that now with a 2D problem, the algebra needed to achieve de
Jacobian in N-R will be harder.

Discretization of Navier – Stokes equation

Applying WRM and after some algebra (integration by parts and boundary conditions), Navier –
Stokes equations can be written as

5 (∇𝒘): (𝜈∇𝒗)𝑑Ω + 5 𝒘 ∙ (𝒂 ∙ ∇)𝒗𝑑Ω
;

− 5 (∇ ∙ 𝒘)𝑝𝑑Ω
;

= 5 𝒘 ∙ 𝒇𝑑Ω
;;

5 𝑞∇ ∙ 𝒗𝑑Ω
;

= 0

where 𝒂 represents the convective velocity inside the non-linear convective term of the momentum
equation. Introducing the approximation forms for velocity and pressures, as well as applying
Galerkin formulation for their weighted functions (𝒘, 𝑞)	 a matrix system of non-linear equations
governing the discretised Navier – Stokes problem is obtained

?𝑲 + 𝑪(𝒗) 𝑮𝑻
𝑮 𝟎

E F
𝒗
𝒑H = F𝒇

𝟎
H

K and G represents viscosity and discrete gradient operator respectably and C(v) the convection
matrix.
Two different implicit methods, Picard and Newton – Raphson are going to be implement in order
to solve Navier – Stokes problem dealing with the problem that works with the convective term
introduces. Remark that, other modifications as GLS or SUPG stabilizations should be introduced
in order to solve Galerkin classical method problem for convection dominate flows.

Picard method

Picard method can implement to solve systems as 𝑨(𝑥)𝒙 = 𝒃(𝑥). Through an iterative process,
given initial value 𝒙M the following 𝒙NOP approximations are going to be solved until the solution
converge.

𝑨Q𝑥NR𝒙𝒌O𝟏 = 𝒃(𝑥)

Now the idea is going to solve at each iteration

U
∆𝑥NOP = 𝑥NOP − 𝑥N

𝑥NOP = 𝑨Q𝑥NRW𝟏𝒃(𝑥N)
 →		∆𝑥NOP = 𝑨Q𝑥NRW𝟏Q𝒃Q𝑥NR − 𝑨Q𝑥NR𝑥NR

It can be applied to Navier – Stokes, obtaining the final system that will be implement in Matlab in
order to obtain the desired results.

?𝑲 + 𝑪(𝒗
𝒌) 𝑮𝑻

𝑮 𝟎
E ?𝒗

𝒌O𝟏

𝒑𝒌O𝟏E = F𝒇
𝟎
H

K and G matrices reaming equal than for Stokes equation and are already implement in the code,
so now the focus will be in introduce the convective term inside the current code.
	

(𝒂 ∙ ∇)𝒗 =

⎣
⎢
⎢
⎢
⎡𝑎]

𝜕𝑣]
𝜕𝑥

+ 𝑎^
𝜕𝑣]
𝜕𝑦

𝑎]
𝜕𝑣^
𝜕𝑥 + 𝑎^

𝜕𝑣^
𝜕𝑦 ⎦

⎥
⎥
⎥
⎤
= ?

𝑎] 0 𝑎^ 0
0 𝑎] 0 𝑎^

E ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑣]
𝜕𝑥
𝜕𝑣]
𝜕𝑥
𝜕𝑣]
𝜕𝑦
𝜕𝑣]
𝜕𝑦 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑤 ∙ (𝒂 ∙ ∇)𝒗 → 𝑪 = 𝑵(𝒂 ∙ 𝛁)𝑵 → 𝑪 = [𝒎𝒂𝒕	𝑵]𝑻 ?
𝑎] 0 𝑎^ 0
0 𝑎] 0 𝑎^

E [𝒈𝒓𝒂𝒅	𝑵]

Working with the convective term itself, it is developed to give him a shape that make things easier
to pass to the discretized side. In this way, a simple scheme is obtained and introduced in Matlab
code as a combination of the already defined matrices and vectors. Following the stablish scheme,
two functions has been developed to compute the convective matrix. Here, the main part of element
level convective matrix code is shown (Figure 1), remarking as main point that the velocity vector
now must appear as an input.

Once all the matrices are computed, just following the explained scheme of the method (already
implemented) each iteration solution will be obtained.

Newton – Raphson method

N-R method works to solve non-linear systems as 𝒓(𝑥) = 𝟎. Given an initial value 𝑥M the system is
solved in an iterative process until convergence is achieved. The Jacobian plays an important role
in this method, being its computation the hardest part to succeed with the method.

Given a system as 𝑟(𝑥) = 𝐴(𝑥)𝑥 − 𝑏(𝑥) the Jacobian is defined as 𝐽(𝑥) = pq(])
p]

. Applying this

basics concepts to discretized Navier – Stokes the way to implement the method will be obtained
as follows.

function [Ce] = EleMatStokesConv(Xe,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta,NP,v_elem)
 ...

 Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)];
 % Gradient
 Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)];
 Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)];
 % Divergence
 dN = reshape(res,1,nedofV);
 %Velocity
 v_ig = N_ig*v_elem;

 Ce = Ce + Ngp'*(v_ig(1)*Nx + v_ig(2)*Ny)*dvolu;
end

Figure 1. Main part of element convective matrix code – Picard Method

𝑟(𝑥) = ?Q𝐾 + 𝐶(𝑣)R𝑣 + 𝐺
u𝑝 − 𝑓

𝐺𝑣
E 		→ 			𝐽 = w

𝑑𝑟P
𝑑𝑣 𝐺u

𝐺 0
x

Them, for eat iteration

𝐽Q𝑥NR∆𝑥NOP = −𝑟(𝑥N)

Working with the 𝐽PP element it can be saw that all the terms, except form the last one, are already
implement in Picard method.

𝑑𝑟P
𝑑𝑣

=
𝑑
𝑑𝑣
yQ𝐾 + 𝐶(𝑣)R𝑣z = 𝐾 + 𝐶(𝑣) +

𝜕𝐶(𝑣)
𝜕𝑣

𝑣

Inside the Jacobian, the derivation of 𝐶(𝑣) should be a combination of two components. The first
one is already obtained at Picard method whereas the second one (𝐶$) will be obtained now in such
a similar way from the initial convection term definition

(𝒂 ∙ ∇)𝒗 =

⎣
⎢
⎢
⎢
⎡𝑎]

𝜕𝑣]
𝜕𝑥

+ 𝑎^
𝜕𝑣]
𝜕𝑦

𝑎]
𝜕𝑣^
𝜕𝑥 + 𝑎^

𝜕𝑣^
𝜕𝑦 ⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡
𝜕𝑣]
𝜕𝑥

𝜕𝑣]
𝜕𝑦

𝜕𝑣^
𝜕𝑥

𝜕𝑣^
𝜕𝑦 ⎦

⎥
⎥
⎥
⎤
F
𝑎]
𝑎^H

𝑪𝟐 = 𝑵𝑻(𝑵 ∙ 𝛁)𝒂 → 𝑪 = [𝒎𝒂𝒕	𝑵]𝑻

⎣
⎢
⎢
⎢
⎡
𝜕𝑣]
𝜕𝑥

𝜕𝑣]
𝜕𝑦

𝜕𝑣^
𝜕𝑥

𝜕𝑣^
𝜕𝑦 ⎦

⎥
⎥
⎥
⎤
[𝒎𝒂𝒕	𝑵]

Following the stablish scheme, two functions has been developed to compute the convective matrix.
Here, the main part of element level convective matrix code is shown (Figure 2) as well as the
definition of the Jacobian and the increment at each step (Figure 3).

function [Ce,Ce2] = EleMatStokesConv(Xe,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta,NP,v_elem)
 ...

 Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)];
 % Gradient
 Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)];
 Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)];
 % Divergence
 dN = reshape(res,1,nedofV);
 %Velocity
 v_ig = N_ig*v_elem;

 Ce = Ce + Ngp'*(v_ig(1)*Nx + v_ig(2)*Ny)*dvolu;
 Ce2 = Ce2 + (Ngp'*[nx;ny]*v_elem*Ngp)*dvolu;

end

Figure 2. Main part of element convective matrix code – NR Method

 % Computation of residual
 res = Atot*sol0 - btot;
 %Jacobian
 J = [Kred+Cred+Cred2 Gred'
 Gred zeros(nunkP)];

 % Computation of velocity and pressure increment
 solInc = -J\res;

Figure 3. Jacobion and step increments – NR Method

Results and conclusions

The problem will be solve using both method for a 20 elements mesh in each direction. The pair
of velocity – pressure pair implemented will be Q2Q1 that satisfies de LBB condition in order to
avoid problems due to convection at Galerkin formulation.

|𝑅𝑒 = 100
𝜈 = 1/𝑅𝑒

Picard results are shown for de 20 elements Q2Q1 mesh. As it is saw no oscillations appears as it
satisfies the LBB condition. The final result is obtained with 13 iterations and with a linear
convergence plot, as it is expected. Whereas, from some mistakes along the code N-R method
doesn’t work as it should, achieving such a similar result but with more iterations as well as a linear
convergence plot too.
After revising the discretization and implementation of the code, with the idea that they are well
done, just can add that probably with some small modification at the code the expected results will
be achieved, obtaining faster convergence for N-R method.

Figure 4. Pressure field – Picard method Figure 5. Streamlines – Picard method

