Finite Elements in Fluids
March 20, 2019
Master of Science in Computational Mechanics
Universitat Politècnica de Catalunya

Agustina FELIPE RAMUDO

Assignment IV:

Propagation of a steep front
The unsteady-convection equation governing the propagation of a steep front is the following:

$$
\begin{gathered}
\begin{cases}u_{t}+a u_{x}=0 & x \in(0,1), t \in(0,0.6] \\
u(x, 0)=u_{0} & x \in(0,1) \\
u(0, t)=1 & t \in(0,0.6]\end{cases} \\
u_{0}(x)= \begin{cases}1 & \text { if } x \leq 0.2 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Where: $a=1, \Delta x=2 \cdot 10^{-2}, \Delta t=1,5 \cdot 10^{-2}$

1 Courant Number

The courant number is defined as:

$$
\begin{equation*}
C=\frac{|a| \Delta t}{h} \tag{1}
\end{equation*}
$$

Thus for this case the Courant number is:

$$
\begin{equation*}
C=\frac{1 \cdot 1,5 \cdot 10^{-2}}{2 \cdot 10^{-2}}=0,75 \tag{2}
\end{equation*}
$$

2 Solve the problem using the Crank-Nicholson scheme in time and linear finite element for the Galerkin scheme in space. Is the solution accurate?

Figure 2.1: Crank-Nicolson implementation

As you can see, the results are more accurate when a consistent mass matrix is used as shown in figure (a) and there is an error is greater if a lumped mass matrix is used as shown in figure (b).
However, both solutions are stable.

3 Solve the problem using the second-order Lax-Wendroff method. Can we expect the solution to be accurate? If not, what changes are necessary? Comment the results.

Figure 3.1: Law-Wendroff Galerkin implementation (TG2)
When $C \geq \frac{\sqrt{3}}{3}$ the TG2 method shows serious instabilities as it is possible to see it in the image (a) for a consistent mass matrix. But, as it is possible to see in image (b), the stability range expands when a lumped mass matrix is used and this can be observed since the Courant number is the same in both cases.

4 Solve the problem using the third-order explicit Taylor-Galerkin method.

 Comment the results.

Figure 4.1: Third-order Taylor Galerkin implementation (TG3)

The solution by the TGR method can be observed in figure 4.1.
The method has a third order precision in time and therefore the error is lower in comparison with TG2 and CN.
Also, since C is less than 1 , the scheme is stable.

