Finite Elements in Fluids

Nora Wieczorek i Masdeu

February 2019

We consider the pertubed Burgers' equation with strong form

$u_t + uu_x = \epsilon u_{xx}$	for $(x,t) \in [-1,1] \times [0,T]$
$u(x,0) = u_0(x)$	for $x \in [-1, 1]$
u(-1,t) = u(1,t) = 0	for $T \in [0,T]$
) af	

So $f(u) = \frac{u^2}{2} - \epsilon u_x$ and $a(u) := \frac{\partial f}{\partial u} = u$.

1 One-step Taylor-Galerkin method

Considering $u^n := u^n(x) = u(x, n\Delta t),$

$$u^{n+1} = u^n - \Delta t f_x(u^n) + \frac{(\Delta t)^2}{2} (a(u^n) f_x(u^n))_x$$

= $u^n - \Delta t (u^n u^n_x - \epsilon u^n_{xx}) + \frac{(\Delta t)^2}{2} (u^n \cdot (u^n u^n_x - \epsilon u^n_{xx}))_x$

1.1 Weak form

Consider $\omega \in H_0^1([-1,1]) = \{ v \in H^1([-1,1]) : v(-1) = v(1) = 0 \},$

$$\int_{-1}^{1} u^{n+1} \omega dx = \int_{-1}^{1} (u^n - \Delta t (u^n u_x^n - \epsilon u_{xx}^n) + \frac{(\Delta t)^2}{2} (u^n \cdot (u^n u_x^n - \epsilon u_{xx}^n))_x) \omega dx$$
$$= \int_{-1}^{1} u^n \omega dx - \Delta t \int_{-1}^{1} (u^n u_x^n - \epsilon u_{xx}^n) \omega dx + \frac{(\Delta t)^2}{2} \int_{-1}^{1} (u^n \cdot (u^n u_x^n - \epsilon u_{xx}^n))_x \omega dx$$

Considering the integration by part formula,

$$\begin{aligned} \int_{-1}^{1} f_{x}(u^{n})\omega dx &= \left[f(u^{n}(1))\omega(1) - f(u^{n}(-1))\omega(-1)\right] - \int_{-1}^{1} f(u^{n})\omega_{x}dx \\ &= -\int_{-1}^{1} \left(\frac{(u^{n})^{2}}{2} - \epsilon u_{x}^{n}\right)\omega_{x}dx \\ \int_{-1}^{1} (a(u^{n})f_{x}(u^{n}))_{x}\omega dx &= \left[a(u^{n}(1))f_{x}(u^{n}(1))\omega(1) - a(u^{n}(-1))f_{x}(u^{n}(-1))\omega(-1)\right] - \int_{-1}^{1} (a(u^{n})f_{x}(u^{n}))\omega_{x}dx \\ &= -\int_{-1}^{1} (u^{n} \cdot (u^{n}u_{x}^{n} - \epsilon u_{xx}^{n}))\omega_{x}dx \end{aligned}$$

Thus, the weak form of the pertubed Burgers' equation is:

Find $u^{n+1} \in H^1([-1,1])$ such that

$$\int_{-1}^{1} u^{n+1} \omega dx = \int_{-1}^{1} u^n \omega dx + \Delta t \int_{-1}^{1} (\frac{(u^n)^2}{2} - \epsilon u_x^n) \omega_x dx - \frac{(\Delta t)^2}{2} \int_{-1}^{1} (u^n \cdot (u^n u_x^n - \epsilon u_{xx}^n)) \omega_x dx \qquad (1)$$

 $\forall \omega \in H_0^1([-1,1]).$

1.2 FE Discretization

We consider the set of basis functions $\{N_i(x)\}_{i=1,...,m}$ of $H^1([-1,1])$, we suppose $x_1 = -1$ and $x_m = 1$. We define as our approximate solutions $u(x, (n+1)\Delta t) \approx u^h(x, (n+1)\Delta t) = \sum_{i=1}^m u_i^{n+1}N_i(x)$ where $u_i^{n+1} = u(x_i, (n+1)\Delta t)$. We also consider $\omega = \sum_{i=2}^{m-1} \omega_i N_i(x)$ since $\omega \in H_0^1([-1,1])$, so $\omega(-1) = \omega_1 = 0$ and $\omega(1) = \omega_m = 0$.

Thus, substituting in equation 1, we have,

$$\mathbf{W}^{T}(M)_{i=2,...,m-1,j=1,...,m} \mathbf{U}^{n+1} = \mathbf{W}^{T}(F)_{i=1,...m}$$

where $\mathbf{W} = (\omega_2, ..., \omega_{m-1})^T$, $\mathbf{U}^n = (u_1^{n+1}, ..., u_m^{n+1})^T$, $M_{ij} = \int_{-1}^1 N_i(x) N_j(x) dx$ is the mas matrix and $F_i = \int_{-1}^1 u^n N_i(x) dx + \Delta t \int_{-1}^1 (\frac{(u^n)^2}{2} - \epsilon u_x^n) (N_i)_x(x) dx - \frac{(\Delta t)^2}{2} \int_{-1}^1 (u^n \cdot (u^n u_x^n - \epsilon u_{xx}^n)) (N_i)_x(x) dx.$

As the weak form has to be accomplished $\forall \omega \in H_0^1([-1,1])$, we can eliminate it from our equation. From the Dirichlet boundary conditions, we know $u_1^n = u(-1, n\Delta t) = 0$ and $u_m^n = u(1, n\Delta t) = 0$. So at each time iteration we have to solve the following system:

$$M_{i,j=2,...,m-1}\mathbf{U}_{i=2,...,m-1}^{n+1} = \mathbf{F}_{i=2,...,m-1}$$

2 Two-step Taylor-Galerkin method

In this case we will use he following scheme:

$$u^{n+1/2} = u^n - \frac{\Delta t}{2} f_x(u^n)$$
$$u^{n+1} = u^n - \Delta t f_x(u^{n+1/2})$$

2.1 Weak form

As in the One-step method, we compute the weak form of the problem for both equations,

$$\int_{-1}^{1} u^{n+1/2} \omega dx = \int_{-1}^{1} u^n \omega dx - \frac{\Delta t}{2} \int_{-1}^{1} f_x(u^n) \omega dx$$
$$\int_{-1}^{1} u^{n+1} \omega dx = \int_{-1}^{1} u^n \omega dx - \Delta t \int_{-1}^{1} f_x(u^{n+1/2}) \omega dx$$

Using the interation by parts formula,

$$\int_{-1}^{1} f_x(u^n) \omega dx = [f(u^n(1))\omega(1) - f(u^n(-1))\omega(-1)] - \int_{-1}^{1} f(u^n)\omega_x dx = -\int_{-1}^{1} (\frac{(u^n)^2}{2} - \epsilon u_x^n)\omega_x dx$$
$$\int_{-1}^{1} f_x(u^{n+1/2})\omega dx = -\int_{-1}^{1} (\frac{(u^{n+1/2})^2}{2} - \epsilon u_x^{n+1/2})\omega_x dx$$

So the **weak form** of each equation will be:

Find $u^{n+1}, u^{n+1/2} \in H^1([-1,1])$ such that

$$\int_{-1}^{1} u^{n+1/2} \omega dx = \int_{-1}^{1} u^n \omega dx + \frac{\Delta t}{2} \int_{-1}^{1} (\frac{(u^n)^2}{2} - \epsilon u_x^n) \omega_x dx$$
$$\int_{-1}^{1} u^{n+1} \psi dx = \int_{-1}^{1} u^n \psi dx + \Delta t \int_{-1}^{1} (\frac{(u^{n+1/2})^2}{2} - \epsilon u_x^{n+1/2}) \psi_x dx$$

 $\forall \omega, \psi \in H^1_0([-1,1]).$

2.2 FE Discretization

As we did in the One-step method, we discretize our domain and we end with a linear system to solve for each equation:

$$M_{i,j=2,\dots,m-1}\mathbf{U}_{i=2,\dots,m-1}^{n+1/2} = \mathbf{G}_{i=2,\dots,m-1}$$
(2)

$$M_{i,j=2,\dots,m-1}\mathbf{U}_{i=2,\dots,m-1}^{n+1} = \mathbf{H}_{i=2,\dots,m-1}$$
(3)

where $\mathbf{G}_{i} = \int_{-1}^{1} u^{n} N_{i}(x) dx + \frac{\Delta t}{2} \int_{-1}^{1} (\frac{(u^{n})^{2}}{2} - \epsilon u_{x}^{n}) (N_{i})_{x}(x) dx$ and $\mathbf{H}_{i} = \int_{-1}^{1} u^{n} N_{i}(x) dx + \Delta t \int_{-1}^{1} (\frac{(u^{n+1/2})^{2}}{2} - \epsilon u_{x}^{n+1/2}) (N_{i})_{x}(x) dx$.

So at each time iteration we will have to compute the solution of equation 2 to evaluate \mathbf{H} and find the solution of 3.