Finite Elements in Fluids

Nora Wieczorek i Masdeu

February 2019

We consider the pertubed Burgers' equation with strong form

$$
\begin{array}{ll}
u_{t}+u u_{x}=\epsilon u_{x x} & \text { for }(x, t) \in[-1,1] \times[0, T] \\
u(x, 0)=u_{0}(x) & \text { for } x \in[-1,1] \\
u(-1, t)=u(1, t)=0 & \text { for } T \in[0, T]
\end{array}
$$

So $f(u)=\frac{u^{2}}{2}-\epsilon u_{x}$ and $a(u):=\frac{\partial f}{\partial u}=u$.

1 One-step Taylor-Galerkin method

Considering $u^{n}:=u^{n}(x)=u(x, n \Delta t)$,

$$
\begin{aligned}
u^{n+1} & =u^{n}-\Delta t f_{x}\left(u^{n}\right)+\frac{(\Delta t)^{2}}{2}\left(a\left(u^{n}\right) f_{x}\left(u^{n}\right)\right)_{x} \\
& =u^{n}-\Delta t\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)+\frac{(\Delta t)^{2}}{2}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right)_{x}
\end{aligned}
$$

1.1 Weak form

Consider $\omega \in H_{0}^{1}([-1,1])=\left\{v \in H^{1}([-1,1]): v(-1)=v(1)=0\right\}$,

$$
\begin{aligned}
\int_{-1}^{1} u^{n+1} \omega d x & =\int_{-1}^{1}\left(u^{n}-\Delta t\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)+\frac{(\Delta t)^{2}}{2}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right)_{x}\right) \omega d x \\
& =\int_{-1}^{1} u^{n} \omega d x-\Delta t \int_{-1}^{1}\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right) \omega d x+\frac{(\Delta t)^{2}}{2} \int_{-1}^{1}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right)_{x} \omega d x
\end{aligned}
$$

Considering the integration by part formula,

$$
\begin{aligned}
\int_{-1}^{1} f_{x}\left(u^{n}\right) \omega d x & =\left[f\left(u^{n}(1)\right) \omega(1)-f\left(u^{n}(-1)\right) \omega(-1)\right]-\int_{-1}^{1} f\left(u^{n}\right) \omega_{x} d x \\
& =-\int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right) \omega_{x} d x \\
\int_{-1}^{1}\left(a\left(u^{n}\right) f_{x}\left(u^{n}\right)\right)_{x} \omega d x & =\left[a\left(u^{n}(1)\right) f_{x}\left(u^{n}(1)\right) \omega(1)-a\left(u^{n}(-1)\right) f_{x}\left(u^{n}(-1)\right) \omega(-1)\right]-\int_{-1}^{1}\left(a\left(u^{n}\right) f_{x}\left(u^{n}\right)\right) \omega_{x} d x \\
& =-\int_{-1}^{1}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right) \omega_{x} d x
\end{aligned}
$$

Thus, the weak form of the pertubed Burgers' equation is:
Find $u^{n+1} \in H^{1}([-1,1])$ such that

$$
\begin{equation*}
\int_{-1}^{1} u^{n+1} \omega d x=\int_{-1}^{1} u^{n} \omega d x+\Delta t \int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right) \omega_{x} d x-\frac{(\Delta t)^{2}}{2} \int_{-1}^{1}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right) \omega_{x} d x \tag{1}
\end{equation*}
$$

$\forall \omega \in H_{0}^{1}([-1,1])$.

1.2 FE Discretization

We consider the set of basis functions $\left\{N_{i}(x)\right\}_{i=1, \ldots, m}$ of $H^{1}([-1,1])$, we suppose $x_{1}=-1$ and $x_{m}=1$. We define as our approximate solutions $u(x,(n+1) \Delta t) \approx u^{h}(x,(n+1) \Delta t)=\sum_{i=1}^{m} u_{i}^{n+1} N_{i}(x)$ where $u_{i}^{n+1}=$ $u\left(x_{i},(n+1) \Delta t\right)$. We also consider $\omega=\sum_{i=2}^{m-1} \omega_{i} N_{i}(x)$ since $\omega \in H_{0}^{1}([-1,1])$, so $\omega(-1)=\omega_{1}=0$ and $\omega(1)=\omega_{m}=0$.

Thus, substituting in equation 1, we have,

$$
\mathbf{W}^{T}(M)_{i=2, \ldots, m-1, j=1, \ldots, m} \mathbf{U}^{n+1}=\mathbf{W}^{T}(F)_{i=1, \ldots m}
$$

where $\mathbf{W}=\left(\omega_{2}, \ldots, \omega_{m-1}\right)^{T}, \mathbf{U}^{n}=\left(u_{1}^{n+1}, \ldots, u_{m}^{n+1}\right)^{T}, M_{i j}=\int_{-1}^{1} N_{i}(x) N_{j}(x) d x$ is the mas matrix and $F_{i}=\int_{-1}^{1} u^{n} N_{i}(x) d x+\Delta t \int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right)\left(N_{i}\right)_{x}(x) d x-\frac{(\Delta t)^{2}}{2} \int_{-1}^{1}\left(u^{n} \cdot\left(u^{n} u_{x}^{n}-\epsilon u_{x x}^{n}\right)\right)\left(N_{i}\right)_{x}(x) d x$.

As the weak form has to be accomplished $\forall \omega \in H_{0}^{1}([-1,1])$, we can eliminate it from our equation. From the Dirichlet boundary conditions, we know $u_{1}^{n}=u(-1, n \Delta t)=0$ and $u_{m}^{n}=u(1, n \Delta t)=0$. So at each time iteration we have to solve the following system:

$$
M_{i, j=2, \ldots, m-1} \mathbf{U}_{i=2, \ldots, m-1}^{n+1}=\mathbf{F}_{i=2, \ldots, m-1}
$$

2 Two-step Taylor-Galerkin method

In this case we will use he following scheme:

$$
\begin{aligned}
u^{n+1 / 2} & =u^{n}-\frac{\Delta t}{2} f_{x}\left(u^{n}\right) \\
u^{n+1} & =u^{n}-\Delta t f_{x}\left(u^{n+1 / 2}\right)
\end{aligned}
$$

2.1 Weak form

As in the One-step method, we compute the weak form of the problem for both equations,

$$
\begin{aligned}
\int_{-1}^{1} u^{n+1 / 2} \omega d x & =\int_{-1}^{1} u^{n} \omega d x-\frac{\Delta t}{2} \int_{-1}^{1} f_{x}\left(u^{n}\right) \omega d x \\
\int_{-1}^{1} u^{n+1} \omega d x & =\int_{-1}^{1} u^{n} \omega d x-\Delta t \int_{-1}^{1} f_{x}\left(u^{n+1 / 2}\right) \omega d x
\end{aligned}
$$

Using the interation by parts formula,

$$
\begin{aligned}
\int_{-1}^{1} f_{x}\left(u^{n}\right) \omega d x & =\left[f\left(u^{n}(1)\right) \omega(1)-f\left(u^{n}(-1)\right) \omega(-1)\right]-\int_{-1}^{1} f\left(u^{n}\right) \omega_{x} d x=-\int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right) \omega_{x} d x \\
\int_{-1}^{1} f_{x}\left(u^{n+1 / 2}\right) \omega d x & =-\int_{-1}^{1}\left(\frac{\left(u^{n+1 / 2}\right)^{2}}{2}-\epsilon u_{x}^{n+1 / 2}\right) \omega_{x} d x
\end{aligned}
$$

So the weak form of each equation will be:
Find $u^{n+1}, u^{n+1 / 2} \in H^{1}([-1,1])$ such that

$$
\begin{aligned}
\int_{-1}^{1} u^{n+1 / 2} \omega d x & =\int_{-1}^{1} u^{n} \omega d x+\frac{\Delta t}{2} \int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right) \omega_{x} d x \\
\int_{-1}^{1} u^{n+1} \psi d x & =\int_{-1}^{1} u^{n} \psi d x+\Delta t \int_{-1}^{1}\left(\frac{\left(u^{n+1 / 2}\right)^{2}}{2}-\epsilon u_{x}^{n+1 / 2}\right) \psi_{x} d x
\end{aligned}
$$

$\forall \omega, \psi \in H_{0}^{1}([-1,1])$.

2.2 FE Discretization

As we did in the One-step method, we discretize our domain and we end with a linear system to solve for each equation:

$$
\begin{align*}
& M_{i, j=2, \ldots, m-1} \mathbf{U}_{i=2, \ldots, m-1}^{n+1 / 2}=\mathbf{G}_{i=2, \ldots, m-1} \tag{2}\\
& M_{i, j=2, \ldots, m-1} \mathbf{U}_{i=2, \ldots, m-1}^{n+1}=\mathbf{H}_{i=2, \ldots, m-1} \tag{3}
\end{align*}
$$

where $\mathbf{G}_{i}=\int_{-1}^{1} u^{n} N_{i}(x) d x+\frac{\Delta t}{2} \int_{-1}^{1}\left(\frac{\left(u^{n}\right)^{2}}{2}-\epsilon u_{x}^{n}\right)\left(N_{i}\right)_{x}(x) d x$ and $\mathbf{H}_{i}=\int_{-1}^{1} u^{n} N_{i}(x) d x+\Delta t \int_{-1}^{1}\left(\frac{\left(u^{n+1 / 2}\right)^{2}}{2}-\right.$ $\left.\epsilon u_{x}^{n+1 / 2}\right)\left(N_{i}\right)_{x}(x) d x$.

So at each time iteration we will have to compute the solution of equation 2 to evaluate \mathbf{H} and find the solution of 3 .

