
MSc in Computational Mechanics

Finite Elements in Fluids

MATLAB Assignment 2:

Unsteady convection and non-linear
hyperbolic problems

Submitted By:
Mario Alberto Méndez Soto

Submitted To:
Prof. Pablo Saez

Prof. Antonio Huerta

Spring Semester, 2019

1 Propagation of a steep front - unsteady convection

The propagation of a steep front is a physical phenomenon governed by the unsteady convection
equation and the following boundary and initial conditions:

ut + aux = 0 x ∈ (0, 1), t ∈ (0, 0.6]

u(x, 0) = u0 x ∈ (0, 1)

u(0, t) = 1 t ∈ (0, 0.6]

(1)

u0 =

{
1 if x ≤ 0.2

0 otherwise
(2)

For the given problem, the solution will be computed using a convection velocity a = 1. More-
over, the discretization in time and space will be ∆x = h = 2 ·10−2 and ∆t = 1.5 ·10−2, respectively.
Thus, the Courant number equals 0.75.

The initial code given had a fully-operational implementation of the Crank-Nicolson time scheme
with a Galerkin formulation for the space discretization. Firstly, the FEM matrices.m file was
modified to include the computation of the lumped mass matrix using the following expression:

ML :ML
ij =


∫

Ω

NiNjdΩ if i = j

0 if i 6= j
(3)

Using linear elements with an isoparametric formulation, the following matrix definitions are
introduced:

M : Mij =

∫
Ω

NiNjdΩ Consistent mass matrix

C : Cij =

∫
Ω

Ni(a · ∇Nj)dΩ Convection matrix

K : Kij =

∫
Ω

(∇Ni · ∇Nj)dΩ Stiffness matrix

Using the latter definitions, it is possible to write down the corresponding matricial expressions
for different time-discretization schemes after the Galerkin formulation is implemented:

Crank-Nicolson
(1

∆t
M− θC

)
∆u = f + Cun

Crank-Nicolson with lumped mass matrix
(1

∆t
ML − θC

)
∆u = f + Cun

Lax-Wendroff (TG2)
1

∆t
M∆u = f + Cun − ∆t

2
‖a‖2Kun

Lax-Wendroff with lumped mass matrix
1

∆t
ML∆u = f + Cun − ∆t

2
‖a‖2Kun

Third-order Taylor-Galerkin (TG3)
(1

∆t
M +

∆t

6
‖a‖2K

)
∆u = f + Cun − ∆t

2
‖a‖2Kun

1

Subsequently, the file System.m was modified to include the previously introduced matricial
expressions for the different schemes. The results obtained for the TG2 formulation are depicted
in Figure (1). As mathematically predicted, TG2 presents with catastrophic instabilities when

C ≥
√

3
3
≈ 0.577. Nevertheless, the stability range expands when using a lumped mass matrix (1b)

instead of a consistent one (1a), even though Courant number is the same in both cases.

(a) Solution with consistent mass matrix (b) Solution with lumped mass matrix

Fig. 1 – Solution of equation (1) using a Law-Wendroff Galerkin implementation (TG2)

On the other hand, as it can be noted in Figure (2), for the same values of the Courant number
within the stability range, the results are more accurate if a mass consistent matrix is used (2a). In
the case of the Crank-Nicolson formulation, even though both solutions are stable (with only local
non-divergent instabilities) the error is greater when using a lumped mass matrix (2b).

(a) Solution with consistent mass matrix (b) Solution with lumped mass matrix

Fig. 2 – Solution of equation (1) using a Crank-Nicolson implementation

2

The solution of the problem using a TG3 formulation is represented in Figure (3). Since by
definition the method has third-order accuracy in time, the associated error is smaller in comparison
with TG2 and CN with either a consistent or a lumped mass matrix. Moreover, since C ≤ 1 the
scheme is stable.

Fig. 3 – Solution of equation (1) using a Third-order Taylor Galerkin implementation

3

2 Burgers’ equation - nonlinear hyperbolic equation

Burgers’ equation is a non-linear hyperbolic equation that can be expressed as follows in a
convective or non-convective form (see equation (4)).ut +

(u2

2

)
x

= 0 x ∈ (a, b), t ∈ (0,∞)

u(x, 0) = u0(x) x ∈ (a, b)

{
ut + uux = 0 x ∈ (a, b), t ∈ (0,∞)

u(x, 0) = u0(x) x ∈ (a, b)
(4)

For the given case, the domain is defined in the interval [0, 4] and the initial condition is depicted
in Figure (4).

Fig. 4 – Initial condition for equation (4)

The correct solution of Burgers’ equation can be determined by the vanishing viscosity approach.
Thus, the physically compliant weak solution of the inviscid Burger’s equation (4) corresponds to
the solution of the viscous Burgers’ equation (see equation (5))) when the added viscosity tends to
zero. In such a manner, the inviscid case (4) is seen as a special case of:

uεt + uεuεx = εuxx (5)

A FEM Galerkin discretization of equation (5) using u(x, t) ≈ uh(x, t) =
∑
j

Nj(x)uj(t) and

w(x) = Ni(x) produces the following matricial system of equations:

MU̇ + C(U)U + εKU = 0

Using a time discretization with a θ-family scheme, the following schemes are possible:

4

• Forward Euler

M
Un+1 −Un

∆t
+ C(Un)Un + εKUn = 0

MUn+1 =
(
M−∆t

(
C(Un) + εK

))
Un

• Backward Euler

M
Un+1 −Un

∆t
+ C(Un+1)Un+1 + εKUn+1 = 0(

M + ∆t
(
C(Un+1) + εK

))
Un+1 = MUn

The initial code given had fully-operational implementations for the solution of the Burgers’s
equation using an Forward Euler and Backward Euler scheme (with Picard method as the iterative
implementation). The main task was to include a code that uses the Newton-Raphson iterative
method for the solution of non-linear systems of equations, in this case for the Backward Euler
scheme.

To implement the Newton-Raphson method for time step n+1, we define the following equation
to be solved:

f(Un+1) = 0

with f(U) defined as:

f(U) =
(
M + ∆tC(U) + ε∆tK

)
U−MUn

Using the Newton-Raphson, method the initial guess, for a given time step n+ 1, is taken to be
the solution at the previous time step:

0Un+1 = Un

Then, solution of the equation at time n+ 1 after k iterations will be computed as:

k+1Un+1 =k Un+1 − J−1(kUn+1)f(kUn+1)

where matrix J is the Jacobian of the system of equations and is defined as: J =
df

dU
.

Since C(U) is a function that depends linearly on U (after being integrated with the corre-
sponding shape functions). The derivative with respect to U of the expression C(U)U will be of
the form 2C(U). Thus, the Jacobian for the particular given problem will be:

J(U) =
df

dU
= M + 2∆tC(U) + ε∆tK

Thus, the computation of the matrix C(U) will be performed in each iteration k in the Newton-
Raphson implementation.

Using the previous result, a new function burgers imNR.m was created for the implementation
of the Backward Euler scheme with a Newton-Raphson method. The following cite contains the
main cycle that allows the implementation of the method within the function mentioned above:

5

for n = 1:nTimeSteps

U0 = U(:,n); % solution at time time step n

error U = 1; k = 0;

while (error U > 0.5e-5) & & k < 20 % Target error and maximum number of iterations

C = computeConvectionMatrix(X,T,U0);
F = (M + At*C+At*E*K)*U0-M*U(:,n);% Function F(U)
J = M+2*At*C+At*E*K;% Jacobian
U1 = U0-J F; % Result of k iteration
error U = norm(U1-U0)/norm(U1); % Iteration error
U0 = U1; % U update
k = k+1;

end U(:,n+1) = U1;

end

The solution of Burgers’ equation in the domain [1, 4] is depicted in the Figure (6). The final time
is set to be tf = 4. For the computations, space-time discretization with h = 0.02 and ∆t = 0.005s
were used.

Although under the given conditions of space-time discretizations, the methods seem to perform
similarly and the solutions are equally accurate (see Figure (5)). It is worth mentioning that whereas
the convergence of Picard’s has a linear behavior, Newton Raphson converges with a quadratic law.
As to the computational effort, Picard’s method requires the solution of a single linear system per
iteration while Newton-Raphson needs to firstly compute both J, F and then solve the linear system
associated.

Fig. 5 – Result of equation (4) at t = tf = 4s using different techniques

6

(a) Explicit scheme (Forward Euler) (b) Implicit scheme (Picard’s Method)

(c) Implicit scheme (Newton-Raphson Method)

Fig. 6 – Solution of equation (4) using a explicit and implicit schemes

7

