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1 Introduction

This report will cover the 2D steady state advection-diffusion-reaction equation, seen in (1), solution with
WRM using Galerkin approach for FEM spatial discretization with emphasis on stabilization methods
proposed as exercises in laboratory session 3. The first part will briefly explain the code changes in order
to implement each stabilization method: Streamline Upwind Petrov Galerkin (SUPG) and Garlerkin Least
Square(GLS) for both 2D bilinear and bi-quadratic 9-Noded quadrilateral elements. Following, results will
be discussed.

a · ∇u−∇ · (ν∇u) + σu = s (1)

2 Changes in MatLab routines

The implemented changes in MatLab routines are explained in the following subsections.

2.1 Implementation for 2D bi-quadratic quadrilateral elements

In order to enable the formulation of te problem with 9-Noded bi-quadratic quadrilateral elements the
changes in the following MatLab routines were made:

2.1.1 Routine main.m

The proper imposition of boundary conditions for p = 2 was made by the following:
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2.1.2 Routine ShapFunc.m

In this subroutine the definition of each shape function second order derivative, evaluated at gauss points,
was made for bilinear and bi-quadratic quadrilateral elements as follows:

2.1.3 Routine FEM System.m

In this routine the definition of the transformation matrix of the second derivative from natural coordinates
(ξ,η) to physical coordinates (x,y) was made. After some tenacious algebra and the consideration that for a
quadrilateral element with sides aligned with physical coordinates axis the derivatives dx/dη = dy/dξ = 0
and also d2x/dξ2 = d2y/dη2 = 0, the transformation of the shape functions second order derivatives reduces
to: {

d2N
dξ2

d2N
dη2

}
=

(dxdξ)2 (
dy
dξ

)2(
dx
dη

)2 (
dy
dη

)2

{ d2N
dx2
d2N
dy2

}
(2)

The implementation of this transformation becomes:

2.2 Implementation of SUPG

For the SUPG stabilization method, the stabilization term in the case of advection-diffusion-reaction be-
comes:
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∑
e

∫
Ωe

P (w)τR(u)dΩ =
∑
e

(τa · ∇w,a · ∇u)− (τa · ∇w,∇ · (ν∇u)) + (τa · ∇w, σu) (3)

The source term contribution becomes: ∑
e

(τa · ∇w, s) (4)

Thus, the code implementation becomes:

2.3 Implementation of GLS

For the SUPG stabilization method, the stabilization parameter in the case of advection-diffusion-reaction
becomes: ∑

e

∫
Ωe

P (w)τR(u)dΩ =
∑
e

(τa · ∇w,a · ∇u)− (τa · ∇w,∇ · (ν∇u)) + (τa · ∇w, σu)+

−(τ∇ · (ν∇w),a · ∇u) + (τ∇ · (ν∇w),∇ · (ν∇u))− (τ∇ · (ν∇w), σu)+

+(τσw,a · ∇u)− (τσw,∇ · (ν∇u)) + (τσw, σu)

(5)

The source term contribution becomes:∑
e

(τa · ∇w, s)− (τ∇ · (ν∇w), s) + (τσw, s) (6)

Finally the code implementation gets the following form:

3 Results

In this section, thee exercises problems will be solved and the stabilization methods will be compared. Those
three are particular cases of the skew to mesh (30o) advection velocity a in a square domain ([0,1]x[0,1]).

3.1 Problem I : Convection - Diffusion case

For this problem the velocity norm is ‖ a ‖ = 1, ν = 10−4, σ = 0 and s = 0. Discontinuous Dirichlet B.C.
are imposed at inlet (u = 1∀y ∈ Γin|y > 0.2 and u = 0 elsewhere in Γin). Homogeneous Neumann (Natural)
boundary conditions and Homogeneous Dirichlet (essential) at outlet boundary are tested. Figure (1), shows
the results for the case with homogeneous Neumann B.C prescribed at outlet and a 20x20 bilinear elements
mesh.
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Figure 1: Convection-Diffusion case: Homogeneous Neumann (Natural) boundary conditions at outlet
boundary

In this case its clear the over diffusive response of the Artificial Diffusion in cross-wind direction, Figure
(1) (b), stabilization method when compared with SUPG and GLS. Further, SUPG and GLS presents,
Figure (1) (c) and (d), almost same behavior reducing oscillations in the Galerkin solution.

Figure (2), show the results for the case with homogeneous Neumann B.C prescribed at outlet and a
20x20 bilinear elements mesh. This case is characterized by a thin bpundary-layer at outlet

Again, in this case its clear the over diffusive response of the Artificial Diffusion, Figure (2) (b), stabi-
lization method when compared with SUPG and GLS. Further, SUPG and GLS presents, Figure (2) (c) and
(d), almost same behavior reducing oscillations in the Galerkin solution, which in this case are completely
spurious.
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Figure 2: Convection-Diffusion case: Homogeneous Dirichlet (essential) boundary conditions at outlet
boundary

3.2 Problem II : Convection - Reaction dominated case

For this problem the velocity norm is ‖ a ‖ = 0.5, ν = 10−4 and σ = 1. Discontinuous Dirichlet B.C. are
imposed at inlet (u = 1∀y ∈ Γin|y > 0.2 and u = 0 elsewhere in Γin). Homogeneous Dirichlet (essential)
boundary condition at outlet boundary is prescribed. Figure (3), show the results for a 20x20 bilinear
elements mesh.

In this case the Artificial Diffusion adds more in cross-wind diffusion as previously, however the effect is
not so noticeable as reaction is present. Further, SUPG and GLS presents, Figure (1) (c) and (d), almost
same behavior reducing oscillations in the Galerkin solution.
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Figure 3: Convection-Reaction dominated case

3.3 Problem III: Reaction dominated case

For this problem the velocity norm is ‖ a ‖ = 10−3, ν = 10−4,σ = 1 and s = 1 (uniform source term).
Homogeneous Dirichlet boundary condition at both inlet and outlet boundaries are prescribed. Figure (4),
show the results for a 20x20 bilinear elements mesh.

In this case all methods have similar behavior as a low convective situation is present and stabilization
has lower effects due to higher Pe number.
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Figure 4: Reaction dominated case
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