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Problem statement 

Case 1. Pure convection  

{

𝑢𝑡 + 𝑎𝑢𝑥 = 0 𝑥 ∈ (0,1), 𝑡 ∈ (0,0.6]

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0,1)

𝑢(0, 𝑡) = 0 𝑡 ∈ (0,0.6]
 

𝑢0(𝑥) {

1

2
(1 + cos (

𝜋(𝑥 − 𝑥0)

𝜎
))                𝑖𝑓 |𝑥 − 𝑥0| ≤ 𝜎

0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Since 𝑎 = 1, 𝑥0 = 0.2, 𝜎 = 0.12, ∆𝑥 = 2 · 10−2 

Next it is shown the solution of the pure convection case for different explicit and implicit 

time-stepping methods. To get better insight on the stability of these methods, they have 

been implemented with the lumped mass matrix formulation besides of the consistent 

mass matrix which was already set.  

The general purpose of implementing the lumped mass matrix is meant to be done to 

update the solution in a fully explicit way or make an implicit algorithm more robust and 

efficient. 

In the case presented, they are used the row-sum mass lumping technique and the 

diagonalization of the mass matrix which coincide for the use of linear elements. 

The number of elements is set to 50 since  

 

1

2 · 10−2
 

To check reliability on the worked cases Courant = 0.6 to check if the figures obtained 

are the same as the ones given in the slides. This is not part of the exercises. 

 



 

 

 

 

As it can be seen in the figures above, the solution by means of Lax-Wendroff (TG2) with 

consistent matrix exhibits better phase accuracy than the scheme for Lax-Wendroff with 

diagonal matrix. The stability limit for second order Galerkin is C2≤1/3. When Lax-Wendroff is 

performed with diagonal matrix is stable up to C2= 1 and possesses the so-called CFF property. 

That means that exact nodal solution is obtained on a uniform mesh when C2= 1. Therefore, as 

it is shown in the figure: 

 

Figure 3. TG2 Consistent Matrix at t = 0.6s. 

 

Figure 4. Lax Wendroff Lumped Matrix at t = 0.6s. 

 

Figure 5.CN Consistent Matrix at t = 0.6s. 

 

Figure 6.CN Lumped Matrix at t = 0.6s. 
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. TG2 at t = 0.34s. 

 

 

 

Figure 7.TG3 Consistent Matrix at t = 0.6s. 

 

Figure 8.TG4 Consistent Matrix at t = 0.6s. 



 

On the other hand, Lax Wendroff with diagonal mass matrix has predominant lagging phase 

error, except for large wave numbers, this is when C > ½. Therefore, to illustrate the behaviour 

of the explained we have: 

 

Taylor Galerkin 3 it exhibits a uniform phase accuracy over the interval 0 < C < 1 while TG4 has 

excellent performance at all numbers of Courant. 

So, as a summary, it needs to be noted that methods with consistent matrix have better phase 

accuracy than the ones with diagonal mass when keeping C in the stability range. 

 

 

 

 

 

 

Figure .Lax Wendroff Lumped Matrix  

Courant =1. 

 

Figure .Lax Wendroff Lumped Matrix  

Courant =0.2. 



 The lumped matrix consists on adding to the diagonal terms, the sum of the rows. 

 

It is also mandatory to implement the choice for lumped matrix use in the main function. 

 

Some research has driven to find an expression that works fine when using linear elements. 

This is the case of the diagonalization of the mass matrix. 

 

To show how the expressions for the already discretized in time and in space are typed, we 

refer to the following: 



 

 

Problem statement 

Case 2. Propagation of a steep front 

{

𝑢𝑡 + 𝑎𝑢𝑥 = 0 𝑥 ∈ (0,1), 𝑡 ∈ (0,0.6]

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0,1)

𝑢(0, 𝑡) = 1 𝑡 ∈ (0,0.6]
 

𝑢0(𝑥) {
1               𝑖𝑓𝑥 ≤ 0.2
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

With the conditions: 𝑎 = 1, ∆𝑥 = 2 · 10−2, ∆𝑡 = 1.5 · 10−2  

Throughout this date, we can conclude that the Courant number is 0.75. 

And, also, the number of time steps is 40 due to: 

0.6

1.5 · 10−2
 



 

 

 

1. Compute Courant number: 
0.6·

1

∆𝑡
1

∆𝑥

=
0.6·

1

1.5·10−2

1

2·10−2

= 0.75 

2. The solution for CN by means of both consistent and lumped matrices is not accurate. It 

introduces spurious oscillations due to Galerkin formulation. Also, these residual 

oscillations remain at the front since Crank Nicolson is not such a monotone scheme. By 

using nonlinear viscosity added at the front to improve the scheme locally first order 

accurate. 

3. The solution with Lax-Wendroff (TG2) introduces even more instabilities due to be, the 

computed Courant number, overcoming the expected limit number for such scheme 

which is C2≤1/3. On the other hand, the solution could be improved by working with 

diagonal mass matrix (lumped mass matrix). This way, the stability range for Courant 

 

Figure 9. TG2 Consistent Matrix at t = 0.6s. 

 

Figure 10. Lax Wendroff Lumped Matrix at t = 0.6s. 

 

Figure 11. CN Consistent Matrix at t = 0.6s. 

 

Figure 12. CN Lumped Matrix at t = 0.6s. 

 

Figure 13.TG3 Consistent Matrix at t = 0.6s. 

 

Figure 14.TG4 Consistent Matrix at t = 0.6s. 
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. TG2 at t = 0.34s. 

 

 



number gets broaden. However, there are still spurious oscillations. Stability for this 

method is commented in first exercise. 

4. In the case of third-order Galerkin, it comes out a solution in which the oscillations are 

mainly removed. It gets better accuracy than Lax Wendroff with diagonal matrix 

however, due to Galerkin formulation, steep functions cannot be shaped. The extra 

terms compared to TG2 blur the possible spurious oscillations of that method.  

 


