
INTERNATIONAL CENTRE FOR

NUMERICAL METHODS IN ENGINEERING

UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS

Finite Element in Fluids
Homework 2

Eugenio José Muttio Zavala

February 20, 2019

Submitted To:
Prof. Antonio Huerta

Prof. Pablo Saez

1 STEADY CONVECTION DIFFUSION EQUATION IN 1D

1.1 STRONG FORM

Considering the problem in which is implied the transport of fluid particles represented by a
scalar quantity u = u(x) in a domainΩwith smooth boundary Γ. The boundary is composed
by a zone ΓD with prescribed transport value u, named “Dirichlet Boundary ”, and another
zone ΓN with prescribed diffusive flux known as “Neumann Boundary”. The boundary value
problem is defined by the equations:

a ·∇u −∇· (ν∇u) = s i n Ω (1.1)

u = uD i n ΓD (1.2)

ν
∂u

∂n
= uN i n ΓN (1.3)

Where:

• u - is the scalar unknown.

• a - is the convection velocity.

• ν - is the diffusion coefficient.

• s - is a source term.

Notice that ν> 0 the problem becomes as the solution of an elliptic partial differential equa-
tion. In contrast if the diffusion coefficient is equal to zero then the problem is pure convective
and the PDE is hyperbolic.

1.2 WEAK FORM

In order to solve the problem numerically by using the Finite Element Method, it is necessary
to obtain the integral or “weak” form of the convection-diffusion equation. By choosing the
Galerkin approximation approach, the first step is operate the expression by multiplicating a
test function w and integrate in the full domain:∫

Ω
w(a ·∇u)dΩ−

∫
Ω

w∇· (ν∇u)dΩ=
∫
Ω

w sdΩ

Because of the second derivatives involved in the above equation, there is a lack of simme-
try which leads to an non-symmetric expression of the algebraic equation system from the
discretization process. In that sense it is convenient to add a restriction on w and get rid of
the second derivative on u. For that reason is necessary to do a integation by parts, which
formula is:

2

∫
Ω

g (∇f)dΩ=−
∫
Ω
∇g · fdΩ+

∫
ΓN

g f ·ndΓ (1.4)

Then, the next step is to use this formula in the steady transport equation:∫
Ω

w(a ·∇u)dΩ+
∫
Ω
∇w · (ν∇u)dΩ=

∫
Ω

w sdΩ+
∫
ΓN

wuN dΓ (1.5)

It is important to remark that the integration by parts of the diffusion term allows us to natu-
rally introduce the prescribed flux condition on the Neumann boundary. Now, the equation
1.5 can be presented in a compact form:

a(w,u)+c(w,u,a) = (w, s)+ (w,uN)ΓN (1.6)

where:

a(w,u) =
∫
Ω
∇w · (ν∇u)dΩ

c(w,u,a) =
∫
Ω

w(a ·∇u)dΩ

(w, s) =
∫
Ω

w sdΩ

(w,uN)ΓN =
∫
ΓN

wuN dΓ

1.3 DISCRETIZATION

To perform the numerical solution of the equations explained before, it is important to re-
mark that the type of approximation is implemented by Galerkin method. Having in mind
this, it can be consider that the main ingredients to perform the spatial discretization of the
convection-diffusion problem is already given. Then, Galerkin formulation works by restrict-
ing the weak form to the approximate solution uh written as:

u(x)h =∑
NA(x)uA +ND (x)uD (1.7)

where NA is the shape function associated with the node number A and uA is the nodal un-
known. Morever, as Galerkin shows, the test functions wh are defined by the same shape
functions. This strategy allows to convert the weak form in a set of equations that govern the
nodal values of the discrete solution of the convection-diffusion problem:

(C+K)u = f (1.8)

The equation 1.8 contains u which is the vector of nodal values, C the convection matrix and
K the diffusion matrix. Both matrices are obtained by topological assembly of each finite
element considered in the discretization, then the convection matrix is:

3

Ce
ab =

∫
Ωe

Na(a ·∇Nb)dΩ (1.9)

Diffusion matrix is defined as:

Ke
ab =

∫
Ωe

∇Na · (ν∇Nb)dΩ (1.10)

The r.h.s vector considers the contribution of the source term s, and it may includes the in-
formation given previously by the Neumann boundary, which are the prescribed fluxes:

fe
a =

∫
Ωe

Na sdΩ+
∫
Ωe

NauN dΩ (1.11)

1.3.1 GALERKIN LINEAR APPROXIMATION

The weak form is now discretized in a uniform mesh of linear elements of size “h”. As is one
dimension, the global numbering of the nodes is consecutive, and the local numbering is
denoted as 1 and 2. The shape functions of a linear element are:

N1(ξ) = 1

2
(1−ξ) (1.12)

N2(ξ) = 1

2
(1+ξ) (1.13)

where ξ is the normalized coordinate, −1 ≤ ξ≤ 1. At any interior of the element has a solution
interpolation and the geometry interpolation given by the next equations respectively:

u(ξ) = N1(ξ)u1 +N2(ξ)u2 (1.14)

u(ξ) = N1(ξ)x1 +N2(ξ)x2 (1.15)

and thus,

∂Nb

∂x
= ∂Nb

∂ξ

∂ξ

∂x
= 2

h

∂Nb

∂ξ
f or b = 1,2. (1.16)

The evaluation of the matricial system of equations require a numerical integration, that is
the relevance of transform to a normalized coordinate system. Using Gauss quadratures at
the normalized points, it can transform the integral form as a sum of products defined by
the reference element points zg = (ξg ,ηg) and weights ωg , for example the source term is
integrated as: ∫

Ωe
Na sdΩ≈

ng auss∑
g=1

Ni (zg)s(x(zg))‖J (zg‖ ·ωg

The Galerkin approach to solve numerically the 1D steady transport equation by FEM is im-
plemented in Matlab with the methodologies explained above, so adding these ingredients
into the code some exercises can be analyzed.

4

PROBLEM STATEMENT

Solve the 1D convection-diffusion equation with constant coefficients. The source term is
equal to s = 0, and the Dirichlet boundary conditions are u0 = 0 and u1 = 1. Different values
of the coefficients of convection and diffusion will be tested and the discretization is constant
with 10 linear elements.

Figure 1.1: a = 1, ν= 0.2, 10 linear elements.

Figure 1.2: a = 20, ν= 0.2, 10 linear elements.

Figure 1.3: a = 1, ν= 0.01, 10 linear elements.

Figure 1.4: a = 1, ν= 0.01, 50 linear elements.

5

Discussion 1

The above experiments can show some interesting facts about the Galerkin method
when is coded to solve numerically the steady transport equation. The figure 1.1
shows that in a problem with balanced diffusion compared with the convection,
the solution is useful even with only ten elements. The problem starts when the
convection is considerable greater than diffusion like the figure 1.2 and 1.3 where the
solution at nodes starts to oscillate. Increasing the number of elements the solution
get better as is expected when using FEM methodology.

The importance between the convective and diffusive effects can be measured by the
Péclet number:

Pe = ‖a‖h

2ν
(1.17)

This number depends on the convective and diffusive coefficients, but also in the
mesh used in the experiment. As is presented in the graphs, the Péclet number is di-
rectly involved in the behavior of the numerical solution. The first graph has a Péclet
Pe = 0.25 and performs good, meanwhile the figure 1.2 and 1.3 have a Péclet Pe = 5
even though the coefficients are different, but because of the same ratio the result is
oscillatory. With this results, one can notes that Galerkin solution is corrupted by non-
physical oscillations that no corresponds with the initial problem when Péclet is larger
than one. The next try will be solve the equation by using FEM but with a quadratic
elements approximation.

1.3.2 GALERKIN QUADRATIC APPROXIMATION

The methodology implementing quadratic elements is more or less the same by using lin-
ear elements, the main difference it is the discretization with quadratic shape functions, the
equation matrices will be bigger and the numerical integration will vary in coefficients in or-
der to use the same approximation. Considering an element with end nodes 1 and 3, and
a mid-side node 2, and the normalized coordinate −1 ≤ ξ ≤ 1, the shape functions of the
elements are:

N1(ξ) = 1

2
ξ(ξ−1) (1.18)

N2(ξ) = (1−ξ2) (1.19)

N3(ξ) = 1

2
ξ(ξ+1) (1.20)

At any interior of the element has a solution interpolation and the geometry interpolation
given by the next equations respectively:

6

u(ξ) = N1(ξ)u1 +N2(ξ)u2 +N3(ξ)u3 (1.21)

x(ξ) = N1(ξ)x1 +N2(ξ)x2 +N3(ξ)x3 (1.22)

If a uniform mesh is used, the middle node is located at x2 = 1
2 (x1 + x3). Then, if the charac-

teristic size h (where h is considered the distance between nodes not the element size), the
following relations hold between the normalized and physical coordinates: d x = hdξ, then:

∂Nb

∂x
= ∂Nb

∂ξ

∂ξ

∂x
= 1

h

∂Nb

∂ξ
f or b = 1,2,3. (1.23)

Code Implementation 1

The Matlab code used in the Galerkin linear approximation is the same for the
quadratic approximation, just is necessary to add a modification in the nodes assign-
ment at the time of the discretization. In other words, instead of having a connectiv-
ity matrix given by T=[1:nPt-1; 2:nPt] where nPt is the number of nodes of the mesh,
the quadratic connectivity matrix has the form T=[2*I-1; 2*I; 2*I+1] for each element
in the discretization. The numerical integration is modified too, changing the Gauss
quadrature values to consider a integration of order 3, and finally adding a conditional
to select if the approximation is linear o quadratic. The same experiments done before
were tested with this higher order element.

Figure 1.5: a = 20, ν = 0.2, 5 quadratic ele-
ments.

Figure 1.6: a = 1, ν = 0.01, 10 quadratic ele-
ments.

7

Discussion 2

Using higher order elements as the quadratic approximation, it could be expected a
better solution compared with the linear. This convergence behavior only happens in
problems where the convection-diffusion effects are balanced. But in fact, compar-
ing with the same experiments as before, the quadratic element also has problems in
convection dominated problems, mainly because Galerkin delivers two types of nodal
equations representing the discrete counterpart of the convection-diffusion equation.
As seen in the figures, the Péclet number above 1 indicates node oscillation in the so-
lution. By decreasing the size of the discretization could performs better but in order
to obtain a useful result it will be needed a very fine mesh that can be computational
expensive.

1.3.3 SOURCE TERM

The next test that is recommended to attend using Galerkin approach with linear and quadratic
elements is to add a source term which is not constant as the previous experiments. The func-
tion of source term is:

s = 10e−5x −4e−x (1.24)

Figure 1.7: a = 1, ν= 0.01, 10 linear elements,
source term s = 10e−5x −4e−x .

Figure 1.8: a = 1, ν= 0.01, 50 linear elements,
source term s = 10e−5x −4e−x .

8

Figure 1.9: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 10e−5x −4e−x .

Figure 1.10: a = 1, ν = 0.01, 25 quadratic ele-
ments s = 10e−5x −4e−x .

Discussion 3

In that case, it can be shown that Galerkin shows defficiencies again, first because of
the Peclét number is over 1, which causes oscillations in the solution nodes. Second,
the soure term now is not a constant value, and as it was explained in the theory, using
this type of function it could be added unwanted truncation errors due the spatial dis-
cretization of the source term. So, as can it can be observed in the graphs, it is needed
50 and 25 linear and quadratic elements respectively to reach the Péclet number equal
to 1 and obtain a better solution.

1.4 STREAMLINE UPWIND SU

As seen in the previous experiments, Galerkin presents deficiencies in convection dominated
problems, so the general idea to avoid this problem is adding “more weight” to the terms
associated with the transport in the upwind direction. Solving the convection diffusion prob-
lem by employing linear elements it is possible to formulate an optimal upwind technique
producing exact values in the nodes, modifying the initial equation as:

aux − (ν+ ν̄)uxx = 0 wi th ν̄=βah

2
(1.25)

where the magnitude of the added diffusion, ν̄, is governed by the free parameterβ(0 ≤β≤ 1),
which value can be calculated optimally by:

β= coth(Pe)− 1

Pe
(1.26)

If the discretization proposed is by using quadratic elements, the formulation is more com-
plicated due the difference between the approximation solutions given by the corner nodes
and the mid-side node, seen in the previous section using Galerkin. At the mid-side nodes,
the optimal value of the added diffusivity is given by the same formula of the linear elements
of the equation . The artificial viscosity that needs to be added at the corner nodes is:

9

βcor ner = (coth(Pe)−1/Pe)− (cosh(Pe))2(coth(2Pe)−1/(2Pe))

1− (cosh(Pe))2/2
(1.27)

Code Implementation 2

Now, with this different approach it is possible to implement a solution for the trans-
port equation which is more stable than the original Galerkin. So, in the Matlab code
it is needed to add a conditional which selects the type of approximation (linear or
quadratic) to choose the β that is needed to perform the matrix assembling. So if the
quadratic element is requested, the code activates the formula given before to add the
corner nodes.

Now consider some of the experiments done by Galerkin but using the streamline upwind
technique, using a constant source term equal to zero and another one with the form s =
10e−5x −4e−x :

Figure 1.11: a = 1, ν = 0.01, 10 linear ele-
ments, source term s = 0.

Figure 1.12: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 0.

Figure 1.13: a = 1, ν = 0.01, 10 linear ele-
ments, source term s = 10e−5x −
4e−x .

Figure 1.14: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 10e−5x −4e−x .

10

Discussion 4

Compared by the Galerkin experiments, the solution is completely different and much
better, it can be seen the node values are practically the same as the exact solution,
even when using the linear approximation. As can be seen, the results are not accept-
able by using a source term that is not a constant number. This behavior is due to the
artificial viscosity added to the discrete problem, in which the SU technique is based.

1.5 STREAMLINE UPWIND PETROV GALERKIN SUPG

In order to stabilize the convective term in a consistent manner, first consider the steady
convection-diffusion-reaction equation:

a ·∇u −∇· (ν∇u)+σu = s i n Ω (1.28)

Now, consider the residual R(u) of the differential equation as:

R(u) = a ·∇u −∇· (ν∇u)+σu − s =L(u)− s i n Ω (1.29)

Then, the general form of the consistent stabilization techniques is:

a(w,u)+c(w,u,a)+ (w,σu)+
+∑

e

∫
Ωe

P(w)τR(u)dΩ= (w, s)+ (w,uN)ΓN (1.30)

where P(w) is a certain operator depending on the technique and τ is the stabilization pa-
rameter or intrinsic time.

The Streamline Upwind Petrov Galerkin technique is defined by:

P(w) = a ·∇u (1.31)

Then, the discrete problem that must be solved is:

a(w,u)+c(w,u,a)+ (w,σu)+
+∑

e

∫
Ωe

(a ·∇wh)τ[a ·∇u −∇· (ν∇u)+σu − s]dΩ

= (w, s)+ (w,uN)ΓN (1.32)

where the stabilization parameter τ is:

τ= v̄

‖a‖2 (1.33)

and v̄ = βah/2 for 1D case. For the linear approximation is noticeable that the stabilization
term in the conevction-diffusion equation reduces to:

11

∑
e

∫
Ωe

(a ·∇wh)τ[a ·∇u − s]dΩ (1.34)

Code Implementation 3

Considering this in the Matlab implementation, we can observe that the only mod-
ification from the linear approximation from the SU code will be add in the “force
vector” the corresponding source term multiplied by (a ·∇wh)τ. The difference oper-
ator disappears because of the linearity of the approximation.

However, in the quadratic approximation it is necessary to consider the stabilization term
as: ∑

e

∫
Ωe

(a ·∇wh)τ[a ·∇u −∇· (ν∇u)− s]dΩ (1.35)

Similar to the previous techniques, for the quadratic approximation the mid-side node and
the corner nodes will be different respect to the β parameter, in which value for the mid-side
nodes is the same as the equation 1.27 and for the corner nodes is:

βcor ner = (2Pe −1)+ (−6Pe +7)e−2Pe + (−6Pe −7)e−4Pe + (2Pe +1)e−6Pe

(Pe +3)+ (−7Pe −3)e−2Pe + (7Pe −3)e−4Pe − (Pe +3)e−6Pe
(1.36)

Now, in order to observe the behavior of SUPG it is good to compare the same exercises solved
by the SU technique in which the source term is constant and when is not.

Figure 1.15: a = 1, ν = 0.01, 10 linear ele-
ments, source term s = 0.

Figure 1.16: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 0.

12

Figure 1.17: a = 1, ν = 0.01, 10 linear ele-
ments, source term s = 10e−5x −
4e−x .

Figure 1.18: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 10e−5x −4e−x .

Discussion 5

As it can be seen in the graphs, SUPG performs as good as SU when the source term
is constant, but the great advantage from the other two methods is reached at looking
the solution with a source term with a function. With less quantity of elements, the
solution at the nodes is practically the same as the exact. The interpolation of the last
part is not very good but adding a few more elements it can be reduced this error.

1.6 GALERKIN/LEAST-SQUARES METHOD GLS

The GLS technique is defined by imposing the stabilization term is an element-by-element
weighted least squares formulation of the differential equation. This corresponds to the fol-
lowing expression suggested applied to the test function:

P(w) =L(w) = a ·∇w −∇· (ν∇w)+σw (1.37)

With this definition, the weak form that must be solved is: find uh such that:

a(w,u)+c(w,u,a)+ (w,σu)+∑
e

∫
Ωe

L(w)τ[L(u)− s]dΩ

= (w, s)+ (w,uN)ΓN (1.38)

in which the stabilization term that affects the l.h.s is symmetric, this is the advantage of this
stabilization technique.

13

Code Implementation 4

The major changes in the implementation of the code compared to SUPG, is the sec-
ond term of P(w) which affects when quadratic elements are employed, if not the GLS
is exactly the same as the linear SUPG and for no reaction problems. The next graphs
show the same experiments done by the previous methods:

Figure 1.19: a = 1, ν = 0.01, 5 quadratic ele-
ments, source term s = 0.

Figure 1.20: a = 1, ν = 0.01, 5 quadratic ele-
ments s = 10e−5x −4e−x .

1.7 CONCLUSION

Final Discussion 1

Finite Element Method is a powerful methodology, which formulated with the most
general and famous scheme to approximate solutions, named “Galerkin”, can obtain
almost exact solutions for problems that involved basic partial differential equations
and specific conditions. But, in some cases as the “Steady Convection-Diffusion Equa-
tion in Fluids”, Galerkin alone can not solve adequately the problem. That is because
of the physics and mathematical nature of the equation that relates another type of
PDE when the diffusion parameter is tending to zero. For that reason, the numerical
techniques of stabilization as SU, SUPG and GLS add interesting operators that helps
Galerkin to counteract this behavior obtaining a variety of useful numerical tools and
therefore better results.

14

