Class Homework 2: 1D Unsteady convection transportation

By Domingo Eugenio Cattoni Correa:
The equation to be solved correspond to the 1D unsteady convection transportation. The source term is $s=0$ and there is no Neumann bc.

$$
\begin{array}{ll}
u_{t}+(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u=0 & \text { in } \Omega \times] 0, T[, \\
u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x}) & \text { on } \Omega \text { at } t=0, \\
u=u_{D} & \text { on } \left.\Gamma_{D}^{i n} \times\right] 0, T[
\end{array}
$$

Leap-Frog (LF) implementation:

The next figure shows the line of the function code called "System" where the LF method was implemented.
After discretizing, the expression of the LF method is:

$$
\left(w, \frac{u^{n+1}}{2 \Delta t}\right)=\left(w, \frac{u^{n-1}}{2 \Delta t}\right)+\left(w,-\boldsymbol{a} \cdot \nabla u^{n}\right)
$$

Since there is no Neumann bc it was not necessary to integrate by part.

As this method is not self-started, it was necessary to use a start method in order to obtain the first two-time step U^{n} and U^{n-1}. The Crank-Nicholson method was used as start method.
The figure below shows the implementation of the method explained before.

Two-step explicit Taylor-Galerkin methods (TG3-2S):

The next figure shows the line of the function code called "System" where TG3-2S method was implemented.
It can be seen the implementation of the first step.

Where
$\mathrm{M}=\int_{\Omega^{\mathrm{e}}} \mathrm{N}^{\prime} \mathrm{Nd} \Omega$ (consistency mass matrix)
$\mathrm{C}=\int_{\Omega^{\mathrm{e}}} \mathrm{N}^{\prime}(\mathrm{a} \nabla \mathrm{N}) \mathrm{d} \Omega$ (convection matrix)
$\mathrm{K}=\int_{\Omega^{\mathrm{e}}} \nabla \mathrm{N}^{\prime} \nabla \mathrm{Nd} \Omega$ (stiffness matrix)

Implementation of the $2^{\text {nd }}$ step

$\Delta u=A^{-1}\left(-a \Delta t C u^{n}-\frac{1}{2} \Delta t^{2} a^{2} K \tilde{U}^{n}\right)$
Where
\tilde{U}^{n} : Is the solution of the $1^{\text {st }}$ step

Result:

According to the stability analysis, the LF method gives a stable solution when C ≤ 0.57 and TG3-2S gives a stable solution when $\mathrm{C} \leq 0.866$, where " C " is the Courant number whose expression is written below.
$\mathrm{C}=|\mathrm{a}| \frac{\Delta \mathrm{t}}{\mathrm{h}}$
Where:
h :mesh size
$\Delta \mathrm{t}$: time step

Figure 1: Solution obtained using different methods A) LF C = 0.5 (stable solution), B) LF C = 0.6 (unstable solution), C) TG3-2S C $=0.8$ (stable solution), D) TG3-2S C $=0.88$. (unstable solution).

