

ASSIGNMENT 2

FINITE ELEMENT FOR FLUIDS

PRADEEP KUMAR BAL

ADVISOR: - Prof. Pablo Saez

 - Report - FEF

2 | P a g e

Problem Statement:-

To solve a one-dimensional transient pure convection problem

𝑢𝑡 + 𝑎𝑢𝑥 = 0; 𝑎 = 1

With the given initial conditions (Problem =2 is considered here, in which it is a product of a

square wave and a sinusoidal wave) and the homogeneous Dirichlet boundary conditions which

are given as u (0, t) =0 and u (L, t) =0.

Goal:-

 To solve the given problem using the Leap-frog method, the third order (TG3) and the

two-step third-order Taylor-Galerkin method (TG3-2S)

 To use 𝛼=1/9 in the TG3-2S method to reproduce the phase-speed characteristics of the

TG3 scheme

Solution:-

Leap Frog Method:-

𝑢𝑛+1−𝑢𝑛−1

2∆𝑡
 = 𝑢𝑡

𝑛 = 𝑠𝑛 − 𝒂 ∗ 𝛁𝑢𝑛

Weighted Residual:-

(w,
𝑢𝑛+1

2∆𝑡
) = (w,

𝑢𝑛−1

2∆𝑡
) + (𝑤 , 𝑠𝑛 − 𝒂 . 𝛁𝑢𝑛)

Galerkin Formulation:-

(w,
𝑢𝑛+1

2∆𝑡
) = (w,

𝑢𝑛−1

2∆𝑡
+ 𝑠𝑛) + (𝒂 . 𝛁𝑤 , 𝑢𝑛) - (𝑤 , 𝑢𝑛 (𝒂. 𝒏))Г𝒐𝒖𝒕 +(𝑤 , ℎ𝑛)Г𝑵

𝒊𝒏 ;

s=0; ℎ𝑖𝑛𝑙𝑒𝑡= − 𝒂𝑢. 𝒏 = 0 as 𝑢𝑛 at the inlet = 0; ℎ𝑜𝑢𝑡𝑙𝑒𝑡 = 0, 𝑢𝑛
Г𝑜𝑢𝑡 = 0;

For the given 1D problem it is reduced to:-

(w,
𝑢𝑛+1

2∆𝑡
) = (w,

𝑢𝑛−1

2∆𝑡
) + (𝑎𝑤𝑥 , 𝑢𝑛)

To evaluate the 𝑢1 the first iteration is performed using the Lax-Wendroff method. At

intermediate and short wavelengths the phase error of the LF scheme becomes positive as the

time step is increased and deteriorates. The relative phase errors of the leap-frog schemes

combined with linear finite elements using a consistent mass representation are reported in

Figures 1(a) and 1(b), for the C=0.5 and C=0.9 respectively. It can be observed that the phase

response of this method deteriorates as the Courant number increases. Furthermore, in the case

 - Report - FEF

3 | P a g e

of the leap-frog method, the combination with finite elements using a consistent mass matrix

leads to a reduced stability range, namely C2<1/3.

Figure 1: Solutions obtained using the Leap Frog method for the C= 0.5 and 0.9 respectively

TG3:

The linear system to be solved in this method at each time step has characteristics similar to

the one obtained by applying the second-order Lax-Wendroff scheme with finite elements. The

advantage here is that, with similar computational cost, we obtain third-order accuracy. The

necessary condition for the numerical stability in 1D is C < 1 for TG3 as compared with 𝐶2 <

1/3 for the Lax-Wendroff and the Leapfrog finite element methods.

TG3 Scheme:-

𝑢𝑛+1−𝑢𝑛

∆𝑡
 =𝑢𝑡

𝑛 +
∆𝑡

2
𝑢𝑡𝑡

𝑛 +
∆𝑡2

6
𝑢𝑡𝑡𝑡

𝑛 + 𝑜(∆𝑡3);

After simplification:-

[1−
∆𝑡2

6
(𝒂. 𝛁)2]

𝑢𝑛+1−𝑢𝑛

∆𝑡
 = −(𝒂. 𝛁)𝑢𝑛+

∆𝑡

2
 (𝒂. 𝛁)2𝑢𝑛+ 𝑠𝑛 +

∆𝑡

2
 (𝑠𝑡

𝑛 −

(𝒂. 𝛁)𝑠𝑛) +
∆𝑡2

6
(𝑠𝑡𝑡

𝑛 − (𝒂. 𝛁)𝑠𝑡
𝑛)

For the given problem s=0; ℎ𝑖𝑛𝑙𝑒𝑡= − 𝒂𝑢. 𝒏 = 0 as 𝑢𝑛 at inlet = 0; ℎ𝑜𝑢𝑡𝑙𝑒𝑡 = 0

∆𝑢𝑛
Г𝑜𝑢𝑡 = 0;

Galerkin Formulation:-

The Galerkin formulation of the given 1D problem for this scheme becomes:

(w,
∆𝑢

∆𝑡
) +

∆𝑡2

6
 (𝑎𝑤𝑥 , 𝒂. 𝛁

∆𝒖

∆𝒕
) = (𝑎𝑤𝑥 , 𝑢𝑛 −

∆𝑡

2
 𝒂. 𝛁 𝑢𝑛)

 - Report - FEF

4 | P a g e

The TG3 scheme possesses the unit CFL property and its accuracy characteristics are illustrated

in the Figure 2. It depicts the enhanced phase accuracy. Unfortunately, the TG3 scheme

experiences a drastic reduction of its stability range in multidimensional situations.

Figure 2: Solutions obtained using the TG3 method for the C= 0.5 (Fig 2. (a)) and C= 0.8

(Fig 2. (b)) respectively

TG3-2S

The two-step versions of the explicit Taylor—Galerkin method TG3 which include second time

derivatives only and are thus easier to implement than the one-step method TG3, especially for

solving nonlinear multidimensional hyperbolic problems. A further advantage of the two-step

Taylor-Galerkin methods is their extended stability range in multidimensional situations as

compared with the one-step TG3 method.

Scheme:

�̃�𝑛 = 𝑢𝑛 +
∆𝑡

3
 𝑢𝑡

𝑛 + 𝛼 ∆𝑡2𝑢𝑡𝑡
𝑛

𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡 𝑢𝑡
𝑛 +

∆𝑡2

2
 �̃�𝑡𝑡

𝑛

Galerkin Formulation for the given problem:-

〈𝑤,
𝑢𝑛−𝑢𝑛

∆𝑡
〉 =

1

3
〈𝒂. 𝛁𝑤, 𝑢𝑛〉 − 𝛼 ∗ ∆𝑡 ∗ 〈𝒂. 𝛁𝑤, 𝒂. 𝛁𝑢𝑛〉

〈𝑤,
𝑢𝑛+1−𝑢𝑛

∆𝑡
〉 = 〈𝒂. 𝛁𝑤, 𝑢𝑛〉 −

∆𝑡

2
 〈𝒂. 𝛁𝑤, 𝒂. 𝛁�̃�𝑛〉

Third-order accuracy is achieved when combining both steps; the parameter α only influences

the coefficient of the fourth-order term in the overall time series. As a consequence, its value

will only affect the modulus of the amplification factor of the resulting scheme but not its phase.

For the choice α = 1/9 the two-step procedure reproduces exactly the phase-speed

characteristics of the single-step TG3 scheme. It can be observed from the comparison of the

Figures 2 and the Figures 3.

 - Report - FEF

5 | P a g e

The condition of numerical stability for the two-step method is |C| < √3/4. The comparison of

the stability limits of TG3 and TG3-2S in 1D can be observed from the Figure 4.

Figure 3: Solutions obtained using the TG3-2S method for the C= 0.5 and 0.8 respectively

Figure 4: (a) Solutions obtained using the TG3 (C=0.9); (b) using TG3-2S (C=0.9)

 The stability range of the two-step scheme in 2D remains practically unaltered with respect to

that in 1D. This is in sharp contrast with the one-step Taylor-Galerkin scheme (TG3), which

experiences a drastic reduction of its stability limit in multidimensional situations. Thus, the

two-step formulation of the explicit Taylor-Galerkin method, besides making high-order

accuracy accessible for truly nonlinear problems, offers the additional advantage of giving an

isotropic stability domain in multidimensional problems. For α = 1/12, the two-step fourth-

order method is obtained. This two-step method has the same stability and accuracy properties

as the classical fourth-order explicit Runge—Kutta method. This method is stable up to C= 1.

 - Report - FEF

6 | P a g e

CODE:-

1. LEAP-FROG:

function [A,B,f] = system_LF(xnode,a)
% [A,B,f] = system_LF(xnode,a)
% L.h.s (A) and r.h.s (B,f) matrices for the leap-frog method.
% The spatial discretization is performed using linear finite
% elements and the Galerkin formulation.
% xnode: nodal coordinates
% a : convection velocity
%

global dt

dtdt = 2*dt;

% Gauss points and weights on the reference element [-1,1]
xipg = [-1/sqrt(3) 1/sqrt(3)]';
wpg = [1 1]';

% Shape functions on the reference element
N_mef = [(1-xipg)/2 (1+xipg)/2];
Nxi_mef = [-1/2 1/2; -1/2 1/2];

% Total number of nodes and elements
numnp = size(xnode,2);
numel = numnp-1;

% Number of Gauss points in each element
ngaus = size(wpg,1);

% Allocate storage
A = zeros(numnp,numnp);
B = zeros(numnp,numnp);
f = zeros(numnp,1);

% MATRICES COMPUTATION
% Loop on elements
for i=1:numel
 unos = ones (ngaus,1);
 h = xnode(i+1)-xnode(i);
 xm = (xnode(i)+xnode(i+1))/2;
 weight = wpg*h/2;
 isp = [i i+1];
 % Loop on Gauss points (numerical quadrature)
 for ig=1:ngaus
 N = N_mef(ig,:);
 Nx = Nxi_mef(ig,:)*2/h;
 w_ig = weight(ig);
 x = xm + h/2*xipg(ig); % x-coordinate of Gauss point
 % Matrices assembly
 A(isp,isp) = A(isp,isp) + w_ig*N'*N;
 B(isp,isp) = B(isp,isp) - w_ig*dtdt*(N')*a*Nx;
 f(isp) = f(isp) + dtdt*w_ig*(N')*SourceTerm(x);
 end
end

 - Report - FEF

7 | P a g e

Solution Step:-

 if meth==4
 % Leap-frog is a two-steps method
 % first iteration is performed using Lax-Wendroff method
 if n == 1
 [A1,B1,f1] = system_LW(xnode,a);
 Atot1 = [A1 Accd';Accd zeros(2)];
 btot = [B1*u(:,n)+f1; bccd];
 aux = Atot1\btot;
 u(:,n+1) = u(:,n) + aux(1:numnp);
 clear A1 B1 f1 Atot1
 else
 btot = [B*u(:,n)+f; bccd];
 aux = U\(L\btot);
 u(:,n+1) = u(:,n-1) + aux(1:numnp);
 end

2. TG 3

 function [A,B,f] = system_TG3 (xnode,a)

global dt

dt_2 = dt/2;
dt2_6 = dt^2/6;

% Gauss points and weights on the reference element [-1,1]
xipg = [-1/sqrt(3) 1/sqrt(3)]';
wpg = [1 1]';

% Shape functions on the reference element
N_mef = [(1-xipg)/2 (1+xipg)/2];
Nxi_mef = [-1/2 1/2; -1/2 1/2];

% Total number of nodes and elements
numnp = size(xnode,2);
numel = numnp-1;

% Number of Gauss points in each element
ngaus = size(wpg,1);

% Allocate storage
A = zeros(numnp,numnp);
B = zeros(numnp,numnp);
f = zeros(numnp,1);

% MATRICES COMPUTATION
% Loop on the elements
for i=1:numel
 unos = ones (ngaus,1);
 h = xnode(i+1)-xnode(i);
 xm = (xnode(i)+xnode(i+1))/2;
 weight = wpg*h/2;
 isp = [i i+1];
 % Loop on Gauss points (numerical quadrature)
 for ig = 1:ngaus
 N = N_mef(ig,:);

 - Report - FEF

8 | P a g e

 Nx = Nxi_mef(ig,:)*2/h;
 w_ig = weight(ig);
 x = xm + h/2*xipg(ig); % x-coordinate of Gauss point
 % Matrices assembly
 A(isp,isp) = A(isp,isp) + w_ig*(N'*N+dt2_6*(a*Nx)'*(a*Nx));
 B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*(N-dt_2*a*Nx);
 f(isp) = f(isp) + w_ig*(N + dt_2*a*Nx)'*SourceTerm(x);
 end
end

3. TG3-2S:

function [A1,B1,f1,A2,B2,f2,C2] = system_TG32S (xnode,a)
% [A1,B1,f1,A2,B2,f2,C2] = system_TG32S(xnode,a) TWO STEP
% The spatial discretization is performed using linear finite
% elements and the Galerkin formulation.
% xnode: nodal coordinates
% a : convection velocity
%

global dt
alpha=1/9; %%%ALPHA= 1/9 (TG3); ALPHA 1/12 (TG4)
dt_2 = dt*dt/2;
dt2_alpha = dt^2*alpha; %%%%%%%%%%%%% ALPHA

% Gauss points and weights on the reference element [-1,1]
xipg = [-1/sqrt(3) 1/sqrt(3)]';
wpg = [1 1]';

% Shape functions on the reference element
N_mef = [(1-xipg)/2 (1+xipg)/2];
Nxi_mef = [-1/2 1/2; -1/2 1/2];

% Total number of nodes and elements
numnp = size(xnode,2);
numel = numnp-1;

% Number of Gauss points in each element
ngaus = size(wpg,1);

% Allocate storage
A1 = zeros(numnp,numnp);
B1 = zeros(numnp,numnp);
f1 = zeros(numnp,1);
A2 = zeros(numnp,numnp);
B2 = zeros(numnp,numnp);
f2 = zeros(numnp,1);
C2 = zeros(numnp,numnp);
% MATRICES COMPUTATION
% Loop on the elements
for i=1:numel
 unos = ones (ngaus,1);
 h = xnode(i+1)-xnode(i);
 xm = (xnode(i)+xnode(i+1))/2;
 weight = wpg*h/2;
 isp = [i i+1];
 % Loop on Gauss points (numerical quadrature)
 for ig = 1:ngaus
 N = N_mef(ig,:);

 - Report - FEF

9 | P a g e

 Nx = Nxi_mef(ig,:)*2/h;
 w_ig = weight(ig);
 x = xm + h/2*xipg(ig); % x-coordinate of Gauss point
 % Matrices assembly
 A1(isp,isp) = A1(isp,isp) + w_ig*(N'*N);
 B1(isp,isp) = B1(isp,isp) -

w_ig*((dt/3*N'*(a*Nx))+dt2_alpha*(a*Nx)'*(a*Nx));
 f1(isp) = f1(isp) + w_ig*(N')*SourceTerm(x);

 A2(isp,isp) = A2(isp,isp) + w_ig*(N'*N);
 B2(isp,isp) = B2(isp,isp) - w_ig*(dt*N'*(a*Nx));
 f2(isp) = f2(isp) + w_ig*(N')*SourceTerm(x);
 C2(isp,isp) = C2(isp,isp) - w_ig*(dt_2*(a*Nx)'*(a*Nx));
 end
end

STEPS TO WRITE THE ENTIRE MATRIX:-

% ENTIRE MATRIX
%Atot = [A Accd';Accd zeros(2)];
%[L,U] = lu(Atot);
if meth == 7 % 2-step method
A1tot = [A1 Accd';Accd zeros(2)];
[L1,U1] = lu(A1tot);
 A2tot = [A2 Accd';Accd zeros(2)];
 [L2,U2] = lu(A2tot);
else
 Atot = [A Accd';Accd zeros(2)];
 [L,U] = lu(Atot);
end

SOLUTION STEPS:-

for n = 1 : nstep
 if meth == 7 % 2-step method
 btot = [B1*u(:,n)+ f1; bccd];
 aux = U1\(L1\btot);
 u_m = u(:,n) + aux(1:numnp);
 btot = [B2*u(:,n) + C2*u_m + f2; bccd];
 aux = U2\(L2\btot);
 u(:,n+1) = u(:,n) + aux(1:numnp);
else
 btot = [B*u(:,n)+f; bccd];
 aux = U\(L\btot);
 u(:,n+1) = u(:,n-1) + aux(1:numnp);
 end
end

 ---- END----

