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Problem Statement:- 

To solve a one-dimensional transient pure convection problem 

 

𝑢𝑡 + 𝑎𝑢𝑥 = 0; 𝑎 = 1 

 

With the given initial conditions (Problem =2 is considered here, in which it is a product of a 

square wave and a sinusoidal wave) and the homogeneous Dirichlet boundary conditions which 

are given as u (0, t) =0 and u (L, t) =0.  

Goal:- 

 To solve the given problem using the Leap-frog method, the third order (TG3) and the 

two-step third-order Taylor-Galerkin method (TG3-2S) 

 To use 𝛼=1/9 in the TG3-2S method to reproduce the phase-speed characteristics of the 

TG3 scheme 

Solution:- 

Leap Frog Method:-  

𝑢𝑛+1−𝑢𝑛−1

2∆𝑡
  = 𝑢𝑡

𝑛 =  𝑠𝑛 − 𝒂 ∗ 𝛁𝑢𝑛 

Weighted Residual:-  

(w,  
𝑢𝑛+1

2∆𝑡
 ) = (w, 

𝑢𝑛−1

2∆𝑡
) +  (𝑤 , 𝑠𝑛 − 𝒂 . 𝛁𝑢𝑛  ) 

Galerkin Formulation:-   

(w, 
𝑢𝑛+1

2∆𝑡
 ) = (w,  

𝑢𝑛−1

2∆𝑡
+  𝑠𝑛  ) + (𝒂 . 𝛁𝑤 , 𝑢𝑛 ) - (𝑤 , 𝑢𝑛 (𝒂. 𝒏) )Г𝒐𝒖𝒕 +(𝑤 , ℎ𝑛)Г𝑵

𝒊𝒏 ;  

s=0; ℎ𝑖𝑛𝑙𝑒𝑡= − 𝒂𝑢. 𝒏 = 0 as  𝑢𝑛 at the inlet = 0; ℎ𝑜𝑢𝑡𝑙𝑒𝑡 = 0, 𝑢𝑛
Г𝑜𝑢𝑡 = 0; 

For the given 1D problem it is reduced to:-  

(w,  
𝑢𝑛+1

2∆𝑡
 ) = (w,   

𝑢𝑛−1

2∆𝑡
  ) + (𝑎𝑤𝑥 , 𝑢𝑛 ) 

To evaluate the 𝑢1  the first iteration is performed using the Lax-Wendroff method. At 

intermediate and short wavelengths the phase error of the LF scheme becomes positive as the 

time step is increased and deteriorates. The relative phase errors of the leap-frog schemes 

combined with linear finite elements using a consistent mass representation are reported in 

Figures 1(a) and 1(b), for the C=0.5 and C=0.9 respectively. It can be observed that the phase 

response of this method deteriorates as the Courant number increases. Furthermore, in the case 
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of the leap-frog method, the combination with finite elements using a consistent mass matrix 

leads to a reduced stability range, namely C2<1/3. 

 

Figure 1: Solutions obtained using the Leap Frog method for the C= 0.5 and 0.9 respectively 

TG3:  

The linear system to be solved in this method at each time step has characteristics similar to 

the one obtained by applying the second-order Lax-Wendroff scheme with finite elements. The 

advantage here is that, with similar computational cost, we obtain third-order accuracy. The 

necessary condition for the numerical stability in 1D is C < 1 for TG3 as compared with 𝐶2 < 

1/3 for the Lax-Wendroff and the Leapfrog finite element methods.  

 

TG3 Scheme:-  

 
𝑢𝑛+1−𝑢𝑛

∆𝑡
  =𝑢𝑡

𝑛 +
∆𝑡

2
𝑢𝑡𝑡

𝑛 +
∆𝑡2

6
𝑢𝑡𝑡𝑡

𝑛 + 𝑜(∆𝑡3);  

After simplification:-  

 

[1−
∆𝑡2

6
(𝒂. 𝛁)2] 

𝑢𝑛+1−𝑢𝑛

∆𝑡
 = −(𝒂. 𝛁)𝑢𝑛+ 

∆𝑡

2
 (𝒂. 𝛁)2𝑢𝑛+ 𝑠𝑛 +

∆𝑡

2
 (𝑠𝑡

𝑛 −

(𝒂. 𝛁)𝑠𝑛) +
∆𝑡2

6
(𝑠𝑡𝑡

𝑛 − (𝒂. 𝛁)𝑠𝑡
𝑛) 

For the given problem s=0; ℎ𝑖𝑛𝑙𝑒𝑡= − 𝒂𝑢. 𝒏 = 0 as 𝑢𝑛 at inlet = 0; ℎ𝑜𝑢𝑡𝑙𝑒𝑡 = 0 

∆𝑢𝑛
Г𝑜𝑢𝑡 = 0;  

Galerkin Formulation:-  

The Galerkin formulation of the given 1D problem for this scheme becomes: 

(w, 
∆𝑢

∆𝑡
 ) + 

∆𝑡2

6
 (𝑎𝑤𝑥 , 𝒂. 𝛁 

∆𝒖

∆𝒕
  ) = (𝑎𝑤𝑥 , 𝑢𝑛 − 

∆𝑡

2
 𝒂. 𝛁 𝑢𝑛 )  
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The TG3 scheme possesses the unit CFL property and its accuracy characteristics are illustrated 

in the Figure 2. It depicts the enhanced phase accuracy. Unfortunately, the TG3 scheme 

experiences a drastic reduction of its stability range in multidimensional situations. 

 

Figure 2: Solutions obtained using the TG3 method for the C= 0.5 (Fig 2. (a)) and C= 0.8 

(Fig 2. (b)) respectively 

TG3-2S 

The two-step versions of the explicit Taylor—Galerkin method TG3 which include second time 

derivatives only and are thus easier to implement than the one-step method TG3, especially for 

solving nonlinear multidimensional hyperbolic problems. A further advantage of the two-step 

Taylor-Galerkin methods is their extended stability range in multidimensional situations as 

compared with the one-step TG3 method. 

Scheme:  

�̃�𝑛 =  𝑢𝑛 + 
∆𝑡

3
 𝑢𝑡

𝑛 +  𝛼 ∆𝑡2𝑢𝑡𝑡
𝑛    

𝑢𝑛+1 =  𝑢𝑛 + ∆𝑡 𝑢𝑡
𝑛 + 

∆𝑡2

2
 �̃�𝑡𝑡

𝑛   

Galerkin Formulation for the given problem:-  

 

〈𝑤,
𝑢𝑛−𝑢𝑛

∆𝑡
〉 =

1

3
〈𝒂. 𝛁𝑤, 𝑢𝑛〉 − 𝛼 ∗ ∆𝑡 ∗ 〈𝒂. 𝛁𝑤, 𝒂. 𝛁𝑢𝑛〉  

 

〈𝑤,
𝑢𝑛+1−𝑢𝑛

∆𝑡
〉 = 〈𝒂. 𝛁𝑤, 𝑢𝑛〉 −

∆𝑡

2
 〈𝒂. 𝛁𝑤, 𝒂. 𝛁�̃�𝑛〉 

 

Third-order accuracy is achieved when combining both steps; the parameter α only influences 

the coefficient of the fourth-order term in the overall time series. As a consequence, its value 

will only affect the modulus of the amplification factor of the resulting scheme but not its phase. 

For the choice α = 1/9 the two-step procedure reproduces exactly the phase-speed 

characteristics of the single-step TG3 scheme. It can be observed from the comparison of the 

Figures 2 and the Figures 3.  
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The condition of numerical stability for the two-step method is |C| < √3/4. The comparison of 

the stability limits of TG3 and TG3-2S in 1D can be observed from the Figure 4. 

 

 

 
 

Figure 3: Solutions obtained using the TG3-2S method for the C= 0.5 and 0.8 respectively 

 

 
Figure 4: (a) Solutions obtained using the TG3 (C=0.9); (b) using TG3-2S (C=0.9) 

 

 The stability range of the two-step scheme in 2D remains practically unaltered with respect to 

that in 1D. This is in sharp contrast with the one-step Taylor-Galerkin scheme (TG3), which 

experiences a drastic reduction of its stability limit in multidimensional situations. Thus, the 

two-step formulation of the explicit Taylor-Galerkin method, besides making high-order 

accuracy accessible for truly nonlinear problems, offers the additional advantage of giving an 

isotropic stability domain in multidimensional problems. For α = 1/12, the two-step fourth-

order method is obtained.  This two-step method has the same stability and accuracy properties 

as the classical fourth-order explicit Runge—Kutta method. This method is stable up to C= 1. 
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CODE:-  

1. LEAP-FROG: 

function [A,B,f] = system_LF(xnode,a) 
% [A,B,f] = system_LF(xnode,a) 
% L.h.s (A) and r.h.s (B,f) matrices for the leap-frog method. 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

  
global dt 

  
dtdt = 2*dt; 

  
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

  
% Shape functions on the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% MATRICES COMPUTATION 
% Loop on elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
        % Matrices assembly 
        A(isp,isp) = A(isp,isp) + w_ig*N'*N; 
        B(isp,isp) = B(isp,isp) - w_ig*dtdt*(N')*a*Nx; 
        f(isp) = f(isp) + dtdt*w_ig*(N')*SourceTerm(x); 
    end 
end 
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Solution Step:-  
 
  if meth==4 
        % Leap-frog is a two-steps method 
        % first iteration is performed using Lax-Wendroff method 
        if n == 1 
            [A1,B1,f1] = system_LW(xnode,a); 
            Atot1 = [A1 Accd';Accd zeros(2)]; 
            btot = [B1*u(:,n)+f1; bccd]; 
            aux  = Atot1\btot; 
            u(:,n+1) = u(:,n) + aux(1:numnp); 
            clear A1 B1 f1 Atot1 
        else 
            btot = [B*u(:,n)+f; bccd]; 
            aux  = U\(L\btot); 
            u(:,n+1) = u(:,n-1) + aux(1:numnp); 
        end 

 

2. TG 3 

 function [A,B,f] = system_TG3 (xnode,a) 
 
global dt 

  
dt_2 = dt/2; 
dt2_6 = dt^2/6; 

  
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

  
% Shape functions on the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A = zeros(numnp,numnp); 
B = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% MATRICES COMPUTATION 
% Loop on the elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig = 1:ngaus 
        N = N_mef(ig,:); 
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        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
        % Matrices assembly 
        A(isp,isp) = A(isp,isp) + w_ig*(N'*N+dt2_6*(a*Nx)'*(a*Nx)); 
        B(isp,isp) = B(isp,isp) + w_ig*dt*(a*Nx)'*(N-dt_2*a*Nx); 
        f(isp) = f(isp) + w_ig*(N + dt_2*a*Nx)'*SourceTerm(x); 
    end 
end 

 

3. TG3-2S:  

function [A1,B1,f1,A2,B2,f2,C2] = system_TG32S (xnode,a) 
% [A1,B1,f1,A2,B2,f2,C2] = system_TG32S(xnode,a) TWO STEP 
% The spatial discretization is performed using linear finite 
% elements and the Galerkin formulation. 
%    xnode: nodal coordinates 
%    a :    convection velocity 
% 

  
global dt 
alpha=1/9;    %%%ALPHA= 1/9 (TG3); ALPHA 1/12 ( TG4) 
dt_2 = dt*dt/2; 
dt2_alpha = dt^2*alpha; %%%%%%%%%%%%% ALPHA  

  
% Gauss points and weights on the reference element [-1,1] 
xipg = [-1/sqrt(3) 1/sqrt(3)]';  
wpg = [1 1]'; 

  
% Shape functions on the reference element 
N_mef   =  [(1-xipg)/2 (1+xipg)/2];   
Nxi_mef =  [-1/2 1/2; -1/2 1/2]; 

  
% Total number of nodes and elements 
numnp = size(xnode,2);  
numel = numnp-1;  

  
% Number of Gauss points in each element 
ngaus = size(wpg,1); 

  
% Allocate storage 
A1 = zeros(numnp,numnp); 
B1 = zeros(numnp,numnp); 
f1 = zeros(numnp,1); 
A2 = zeros(numnp,numnp); 
B2 = zeros(numnp,numnp); 
f2 = zeros(numnp,1); 
C2 = zeros(numnp,numnp); 
% MATRICES COMPUTATION 
% Loop on the elements 
for i=1:numel 
    unos = ones (ngaus,1); 
    h = xnode(i+1)-xnode(i); 
    xm = (xnode(i)+xnode(i+1))/2; 
    weight = wpg*h/2; 
    isp = [i i+1];  
    % Loop on Gauss points (numerical quadrature) 
    for ig = 1:ngaus 
        N = N_mef(ig,:); 
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        Nx = Nxi_mef(ig,:)*2/h; 
        w_ig = weight(ig); 
        x = xm + h/2*xipg(ig); % x-coordinate of Gauss point 
        % Matrices assembly 
       A1(isp,isp) = A1(isp,isp) + w_ig*(N'*N); 
        B1(isp,isp) = B1(isp,isp) - 

w_ig*((dt/3*N'*(a*Nx))+dt2_alpha*(a*Nx)'*(a*Nx)); 
        f1(isp) = f1(isp) + w_ig*(N')*SourceTerm(x); 

         
        A2(isp,isp) = A2(isp,isp) + w_ig*(N'*N); 
        B2(isp,isp) = B2(isp,isp) - w_ig*(dt*N'*(a*Nx)); 
        f2(isp) = f2(isp) + w_ig*(N')*SourceTerm(x); 
        C2(isp,isp) = C2(isp,isp) - w_ig*(dt_2*(a*Nx)'*(a*Nx)); 
    end 
end 

 

STEPS TO WRITE THE ENTIRE MATRIX:-  

 
% ENTIRE MATRIX 
%Atot = [A Accd';Accd zeros(2)]; 
%[L,U] = lu(Atot); 
if meth == 7    % 2-step method 
A1tot = [A1 Accd';Accd zeros(2)]; 
[L1,U1] = lu(A1tot); 
 A2tot = [A2 Accd';Accd zeros(2)]; 
 [L2,U2] = lu(A2tot);   
else 
 Atot = [A Accd';Accd zeros(2)]; 
 [L,U] = lu(Atot); 
end 

 

SOLUTION STEPS:-  

for n = 1 : nstep 
    if meth == 7    % 2-step method 
        btot = [B1*u(:,n)+ f1; bccd]; 
        aux =  U1\(L1\btot); 
        u_m =  u(:,n) + aux(1:numnp); 
        btot = [B2*u(:,n) + C2*u_m + f2; bccd]; 
        aux  = U2\(L2\btot); 
        u(:,n+1) = u(:,n) + aux(1:numnp); 
else  
     btot = [B*u(:,n)+f; bccd]; 
            aux  = U\(L\btot); 
            u(:,n+1) = u(:,n-1) + aux(1:numnp);    
  end 
end 

 

 

                ---- END---- 


