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1 Write the HDG formulation of the problem

An equivalent strong form can be written over the broken computational domain as:

−∇ · (κ∇u) = s in Ωi, and for i = 1, ..., nel,

u = uD on ΓD

n · (κ∇u) = t on ΓN

n · (κ∇u) + γu = g on ΓR

JunK = 0 on Γ

Jn · ∇uK = 0 on Γ

(1)

Where the two last equations correspond to the imposition of the continuity of the primal
variable u and the normal fluxes respectively along the internal interface Γ.

The HDG formulation solves the problem in two phases. First, an element-by-element
problem is defined with (q, u) as unknowns defined as:

∇ · qi = s in Ωi,

qi + κ∇ui = 0 in Ωi,

ui = uD on ∂Ωi ∩ ΓD,

ui = û on ∂Ωi\ΓD,

(2)

for i = 1, .., nel.
Second, a global problem is defined to determine û. The imposition of the so-called
transmission conditions,: 

Jn · qK = 0 on Γ

n · q = −t on ΓN

n · q = γû− g on ΓR

(3)

1.1 Weak form

The weak formulation for each element equivalent to (2) is:

−(∇v,qi)Ωi
+ 〈v,ni · q̂i〉∂Ωi

= (v, s)Ωi

−(w,qi)Ωi
+ κ(∇ ·w, ui)Ωi

= κ〈ni ·w, uD〉∂Ωi∩ΓD
+ κ〈ni ·w, û〉∂Ωi\ΓD

(4)
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where the numerical traces of the fluxes q̂i are defined, element-by-element as:

ni · q̂i :=

{
ni · qi + τi(ui − uD) on ∂Ωi ∩ ΓD

ni · qi + τi(ui − û) elsewhere
(5)

with τi being a stabilization parameter.

The weak form of the global problem is defined by û ∈ M(Γ ∪ ΓN ∪ ΓR) for all µ ∈
M(Γ ∪ ΓN ∪ ΓR) such that:

nel∑
n=1

〈µ,ni · q̂i〉∂Ωi\∂Ω +

nel∑
n=1

〈µ,ni · q̂i + t〉∂Ωi∩ΓN
+

nel∑
n=1

〈µ,ni · q̂i + g − γû〉∂Ωi∩ΓR
= 0 (6)

Replacing (5) into (6) we have:

nel∑
n=1

{
〈µ,ni · qi〉∂Ωi\ΓD

+ 〈µ, τiui〉∂Ωi\ΓD
− 〈µ, τiû〉∂Ωi\ΓD

− 〈µ, γû〉∂Ωi∩ΓR

}
= −

nel∑
n=1

{
〈µ, g〉∂Ωi∩ΓR

+ 〈µ, t〉∂Ωi∩ΓN

}
(7)

1.2 Spatial discretization

The following discrete finite-element spaces are introduced:

Wh(Ω) = {w ∈ [L2(Ω)]2; w|Ωi
∈ [Pp(Ωi)]

2 ∀Ωi} ⊂ W(Ω)
Vh(Ω) = {v ∈ [L2(Ω)]2; v|Ωi

∈ Pp(Ωi) ∀Ωi} ⊂ V(Ω)
Mh(S) = {µ ∈ [L2(S)]2; µ|Γi

∈ Pp(Γi) ∀Ωi ⊂ S ⊂ Γ ∪ ∂Ω} ⊂ M(S)
(8)

The variables u, q, and û are approximated as:

q ≈ qh =

nel∑
n=1

Njqj ∈ Wh (9)

u ≈ uh =

nel∑
n=1

Njuj ∈ Vh (10)

û ≈ ûh =

nel∑
n=1

N̂jûj ∈Mh(Γ ∪ ΓN ∪ ΓR) orMh(Γ) (11)

The weak form of the local problem gives rise to the following system of equations for
each element: [

Auu Auq

κAT
uq Aqq

]
i

[
ui

qi

]
=

[
fu
κfq

]
i

+

[
Auû

κAqû

]
i

ûi (12)
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Applying the interpolation to (7):

nel∑
n=1

{ [
AT

uû AT
qû

]
i

[
ui

qi

]
+ [Aûû]i ûi +

[
AR

ûû

]
i
ûi

}
=

nel∑
n=1

{
[fû]i +

[
fRû
]
i

}
(13)

In the above equation the matrices AR
ûû and fRû are associated to the Robin boundary

condition of the problem and are defined as:

AR
ûû = −

∑
∂Ωi∩ΓR

γ

nf
ip∑

g=1

N̂n(ξfg)N̂T (ξfg)wf
g

fRû = −
∑

∂Ωi∩ΓR

nf
ip∑

g=1

N(ξfg)g(x(ξfg))wf
g

After substituting the local solution (12) in (13):

K̂û = f̂

with

K̂ =

nel

A
i=1

[
AT

uû AT
qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
Auû

κAqû

]
i

+ [Aûû]i +
[
AR

ûû

]
i

and

f̂ =

nel

A
i=1

[fû]i +
[
fRû
]
i
−
[

AT
uû AT

qû

]
i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
fu
κfq

]
i

2 Results

Considering:
u(x, y) = k log((x+ a)2) + cos(b(y − γ)3) (14)

With the following data: k = 1.4, γ = 2.2, a = 1 and, b = 3

We can first plot the above function (14), and take it as a reference.
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Figure 2.1: Plot of the function

Analytic expression for uD, t, and g were computed using the MATLAB symbolic tools.

uD =


7 ln

(
(x+ 1)2)

5
+ 0.8638 y = 0

7 ln
(
(x+ 1)2)

5
+ 0.4543 y = 1

Neumann (y=0)

t = −30.7280

Robin (y=1)

g =
77 ln

(
(x+ 1)2)
25

− 15.1638

Corresponding expressions were introduced in the existing functions analyticalPoisson.m
and sourcePoisson.m for the computations of the source term and the exact solution,
which also includes the computations for the Dirichlet boundary values.

New functions were added for the mathematical expressions for t and g: neumanPoisson.m
and robinPoisson.m, respectively.

Now we have to separete the faces in which we are going to apply the boundary conditions,
for this a new function called ExtFace class.m was introduced. This new function divides
the external boundary faces into Neumann, Dirichlet and Robin.
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First, it is shown for a linear approximation different meshes:

(a) u (32 elements) (b) u* (32 elements)

(c) u (512 elements) (d) u* (512 elements)

(e) u (2048 elements) (f) u* (2048 elements)

Figure 2.2: Comparison of the solution u and the postprocessed solution u* using a linear
approximation different meshes.

It is possible to observe how, for a greater number of elements, the error decreases. In
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the following table we can see it clearly comparing the errors obtained:

Number of elements
32 512 2048

Error u 6.111686e+00 1.335498e+00 3.804581e-01
Error u* 1.199813e+00 3.129223e-02 4.110906e-03

Table 1: Comparison of the error of the solution u and the error of the postprocessed
solution u* using a linear approximation with different meshes.

In the following graphs we compare two meshes used with a approximation polynomial
of degree 2:

(a) u (512 elements) (b) u* (512 elements)

(c) u (2048 elements) (d) u* (2048 elements)

Figure 2.3: Comparison of the solution u and the postprocessed solution u* using a
quadratic approximation different meshes.

In the following table we can see the comparison of the error values for the different types
of meshes.
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Number of elements
512 2048

Error u 3.055186e-01 4.043895e-02
Error u* 4.084938e-03 2.593626e-04

Table 2: Comparison of the errors of the solution u and the postprocessed solution u*
using a quadratic approximation different meshes.

It is important to note how for 512 elements we have a minor error for a linear approx-
imation in the postprocessed solution and a linear polynimial approximation compared
to the solution for 512 elements and quadratic approximation.

In the following graphs, we compared two meshes used with an approximation polynomial
of degree 4:

(a) u (512 elements) (b) u* (512 elements)

(c) u (2048 elements) (d) u* (2048 elements)

Figure 2.4: Comparison of the solution u and the postprocessed solution u* using a fourth
order polynomial approximation different meshes.
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The following table shows the comparison of the error values for the different types of
meshes.

Number of elements
512 2048

Error u 5.356439e-03 1.946896e-04
Error u* 4.258941e-05 7.506174e-07

Table 3: Comparison of the errors of the solution u and the postprocessed solution u*
using a fourth order polynomial approximation different meshes.

An h-convergence study of the error of solution and the post-processed solution is per-
formed.

Figure 2.5: Error of the solution and the post-processed solution in the L2(Ω) norm as
a function of the characteristic element size h for different values of the approximation
degree p

The colors represent the polynomial degree. As can be seen as the number of elements
in the mesh increases, the error decreases. Something very important to emphasize are
the improvements of the HDG methodology in the postprocess computation, where the
solution u * that is shown with dashed lines gains precision.
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