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Problem Statement:- 

1D convection-diffusion equation with constant coefficients and Dirichlet boundary 

conditions: 

𝑎𝑢𝑥 − 𝛾𝑢𝑥𝑥 = 𝑠                      𝑥𝜖[0,1];         𝑢0 = 0 𝑎𝑛𝑑 𝑢1 = 1 

Given: s=0;    𝛾 = 0.01,  

Goal:- 

 To solve the given problem using Galerkin, SU, SUPG, GLS, and SGS methods with 

10 linear elements and 10 quadratic elements respectively with the optimal stabilization 

parameter.  

 To observe the effect of the stabilization parameter and to investigate improvement in 

obtained solutions for more number of elements (30 quadric elements have been 

considered this case). 

Solution:- 

Péclet number (Pe) is defined to be the ratio of the rate of advection of a physical quantity by 

the flow to the rate of diffusion of the same quantity driven by an appropriate gradient. For 10 

linear elements h=0.1; Pe= 
ℎ∗|𝒂|

2∗𝛾
 = 5 >1 

Galerkin Approximation:-  

The corresponding weak form is: 

∫ (𝑤 ∗ 𝑎 ∗ 𝑢𝑥 +  𝑤𝑥 ∗ 𝛾 ∗ 𝑢𝑥) 𝑑𝑥 = 0
𝐿

0
   

In this case the stabilisation parameter 𝜏 = 0.  �̅� = 0  

For 10 linear elements node to node oscillations are observed as here Pe > 1 (Figure 1(a)) as 

convection is dominated over diffusion. With 10 quadratic elements a bit more improved 

solutions with significantly lower oscillations are observed (Figure 2(a)).  It can be concluded 

that the Galerkin method lacks enough diffusion.  
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Stream-lined upwind method (SU method):  

It is an optimal technique which produces the exact solution at the nodes of a uniform mesh 

of linear elements. The corresponding weak form is  

∫ (𝑤 ∗ 𝑎 ∗ 𝑢𝑥 +  𝑤𝑥 ∗ (𝛾 +  �̅�) ∗ 𝑢𝑥) 𝑑𝑥 = 0
𝐿

0
  With  �̅� =

𝛽∗𝑎∗ℎ

2
 ; 

 𝜏 =
𝛽∗ℎ

2𝑎
 ; 𝛽 = coth(𝑃𝑒) − 1/𝑃𝑒 

In the given problem the source term is given as zero (constant), so for linear elements exact 

nodal solutions are observed (Figure 1(b)). Also for quadratic elements for this case improved 

solutions have been observed (Figure 3 (b)). One major drawback of this method is its non-

consistent formulation does not perform well for nor constant source terms.  

 

Figure 1: Comparison of solutions from different methods for 10 linear elements 

SUPG Method:-  

The stabilised consistent formulation for this method of the given problem is  

a (w, u) +c(w,u, a)+∑ ∫ ( 𝑤𝑥 ∗ 𝑎 ∗ 𝜏 ∗ 𝑅(𝑢)) 𝑑𝑥 = 0
𝐿

0𝑒  where R(u)= 𝑎𝑢𝑥 − 𝛾𝑢𝑥𝑥 

Here 𝜏 is considered as the optimal stabilisation parameter. 

It is observed that for linear elements this method gives similar results as that of SU method as  

𝑢𝑥𝑥 becomes zero (Figure 1 and 3). For quadratic elements this method gives more improved 
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results. With increasing number of elements the obtained solution tends to the exact solution. 

The added stabilization term is not symmetric. There are technical difficulties in establishing 

the stability of the GLS method. 

One special case is studied for 𝜏 = 1 with 10 linear elements for all the methods. The obtained 

results (Figure:-2 ) are comparatively less accurate than when 𝜏 is considered as the optimal.  

 

Figure 2: 𝜏=1; 10 Linear elements 

 

Figure 3: Comparison of solutions from different methods for 10 quadratic elements 
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Figure 4: Comparison of solutions from different methods for 30 quadratic elements 

GLS Method:-  

The stabilised consistent formulation for this method of the given problem is  

a (w, u) +c(w,u, a)+∑ ∫ ( 𝑃(𝑤) ∗ 𝜏 ∗ 𝑅(𝑢)) 𝑑𝑥 = 0
𝐿

0𝑒  where R(u)= 𝑎𝑢𝑥 − 𝛾𝑢𝑥𝑥 

P (w) = 𝑎𝑤𝑥 − 𝛾𝑤𝑥𝑥  

The added stabilization term is symmetric. For linear elements it provides similar results as 

that of SUPG and SU methods. It can be observed in the Figure 1. For quadratic elements it 

provides much improved results (Figure 4).  

Sub-Grid-Scale (SGS) method:  

The stabilised consistent formulation for this method of the given problem is  

a (w, u) +c(w,u, a)+∑ ∫ ( 𝑃(𝑤) ∗ 𝜏 ∗ 𝑅(𝑢)) 𝑑𝑥 = 0
𝐿

0𝑒  where R(u)= 𝑎𝑢𝑥 − 𝛾𝑢𝑥𝑥 

P (w) = 𝑎𝑤𝑥 +  𝛾𝑤𝑥𝑥  

For linear elements it provides similar results to SUPG, SU and GLS methods as the problem 

is a convection diffusion problem and 𝑢𝑥𝑥 = 0. It can be observed in the Figure 1. For quadratic 

elements it provides much improved results (Figure 4).    
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CODE:-  

SUPG ( QUADRATIC ELEMENT, P=2) 

function [K,f] = system_SUPG_p2(tau,tau_c,a,nu,xnode) 
% [K,f] = system_SUPG_p2(a,nu,xnode) 
% Input: 
%   tau, tau_c: stabilization parameters 
%   a, nu:      equation parameters 
%   xnode :     nodes coordinates 
% Gauss points on the reference element [-1,1] 
xipg = [-sqrt(15)/5 0 sqrt(15)/5]';  
wpg = [5/9 8/9 5/9]'; 

  
% Shape functions and its derivatives on the reference element 
N_mef   =  [(xipg-1).*xipg/2  1-xipg.^2  (xipg+1).*xipg/2];   
Nxi_mef =  [ xipg-1/2 -2*xipg xipg+1/2]; 
Nxxi_mef=  [ 1 -2 1; 1 -2 1; 1 -2 1]; 

  
% Number of nodes and elements 
numnp = size(xnode,2);  
numel = (numnp-1)/2;  

  
% Number of Gauss points 
ngaus = size(wpg,1); 

  
% Allocation of storage for the matrix and vector 
K = zeros(numnp,numnp); 
f = zeros(numnp,1); 

  
% Matrix of stabilization parameters 
% tau_c for the end nodes and tau for the middle one 
Tau = diag([tau_c,tau,tau_c]); 

  
% MATRIX AND VECTOR'S CALCULATION 
% Loop on the elements 
for i = 1:numel 
    h = xnode(2*i+1)-xnode(2*i); 
    weigth = wpg*h; 
    isp = [2*i-1 2*i 2*i+1]; % Global number of the nodes 
    % Loop on the Gauss points 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)/h; 
        Nxx= Nxxi_mef(ig,:)/(h^2); 
        w_ig = weigth(ig); 
        x = xnode(2*i) + h*xipg(ig); % x-coordinate of the Gaussian point 
        % Assembly 
        K(isp,isp) = K(isp,isp) + w_ig*(N'*a*Nx+Nx'*nu*Nx) ... 
                                + w_ig*Tau*(a*Nx)'*(a*Nx-nu*Nxx); 
        f(isp) = f(isp) + w_ig*(N'+Tau*(a*Nx)')*SourceTerm(x); 
    end 
end 
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GLS (P=2) 

 MATRIX AND VECTOR CALCULATION 

 % Loop on the elements 

 for i=1:numel 

     h = xnode(2*i+1)-xnode(2*i); 

     weigth = wpg*h; 

     isp = [2*i-1 2*i 2*i+1]; % Global number of the nodes in the 

current element 

     % Loop on Gauss points 

     for ig=1:ngaus 

         N = N_mef(ig,:); 

         Nx = Nxi_mef(ig,:)/h; 

         Nxx= Nxxi_mef(ig,:)/(h^2); 

         w_ig = weigth(ig); 

         x = xnode(2*i) + h*xipg(ig); % x-coordinate of the Gauss 

point 

         % Assembly 

         K(isp,isp) = K(isp,isp) + w_ig*(N'*a*Nx+Nx'*nu*Nx) ... 

                                 + w_ig*Tau*(a*Nx-nu*Nxx)'*(a*Nx-

nu*Nxx); 

   

         f(isp) = f(isp) + w_ig*(N'+Tau*(a*Nx-nu*Nxx)')*SourceTerm(x); 

     end 

 end 

 

SGS (P=2) 

 
% MATRIX AND VECTOR CALCULATIONS 
% Loop on the elements 
for i=1:numel 
    h = xnode(2*i+1)-xnode(2*i); 
    weigth = wpg*h; 
    isp = [2*i-1 2*i 2*i+1]; % Global number of the element's nodes 
    % Loop on the Gauss points of the element 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)/h; 
        Nxx= Nxxi_mef(ig,:)/(h^2); 
        w_ig = weigth(ig); 
        x = xnode(2*i) + h*xipg(ig); % x-coordinate of the gaussian point 
        % Assembly 
        K(isp,isp) = K(isp,isp) + w_ig*(N'*a*Nx+Nx'*nu*Nx) ... 
                               + w_ig*Tau*(a*Nx+nu*Nxx)'*(a*Nx-nu*Nxx); 
        f(isp) = f(isp) + w_ig*(N'+Tau*(a*Nx+nu*Nxx)')*SourceTerm(x); 
    end 
 end 
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SU (P=2) 

 
% MATRIX ANVECTOR CALCULATION 
% Loop on the elements 
for i=1:numel 
    h = xnode(2*i+1)-xnode(2*i); 
    weigth = wpg*h; 
    isp = [2*i-1 2*i 2*i+1]; % Global number of the element's nodes 
    % Loop on the Gauss points 
    for ig=1:ngaus 
        N = N_mef(ig,:); 
        Nx = Nxi_mef(ig,:)/h; 
        w_ig = weigth(ig); 
        x = xnode(2*i) + h*xipg(ig); % x-coordinate of the Gaussina point 
        % Assembly 
        K(isp,isp) = K(isp,isp) + w_ig*(N'*a*Nx+Nx'*nu*Nx) ... 
                                + w_ig*Tau*(a*Nx)'*(a*Nx); 
        f(isp) = f(isp) + w_ig*(N')*SourceTerm(x); 
   end 
 end 
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