
Assignment 6 (The Gaussian Hill)

PRADEEP KUMAR BAL

April 2, 2018

Adams-Bashforth scheme:

The Adams-Bashforth method is one of the classical methods for transient problems. This is a
second-order accurate explicit method which requires evaluation of the first time derivative at two
consecutive time levels. The scheme is:

un+1 = un + ∆t
2 (3ut

n − utn−1);
Where for this case: ut = −aux + γuxx.

Adams-Bashforth method is not self-starting. The first step is usually performed using the forward
Euler method, preferably with a small time step. For Euler method w=1; W=0. After the first time
step(p=1), w is set to 3/2 and s(i) ∗ (aux) is replaced by s(i) ∗ (aux) + 0.5 ∗Kt ∗ dt ∗ Sol(:, p− 1) for
p = 2 to the final time step.

Stability range of explicit methods (Euler and Adams-Bashforth Schemes):

In pure diffusion in 1D, the forward Euler method is stable for ∆t ≤ h2

6γ or d ≤ 1
6 . The method

is unstable in pure convection if a centered (Galerkin) approximation is used for the convective term.
In convection-diffusion, the stability condition depends on the value of Pe:{

if Pe ≤
√

3; C ≤ Pe
3

if Pe >
√

3 C ≤ 1
Pe

Stability of the second-order Adams-Bashforth method is also governed by the same type of criteria,
but its stability range is only half that for the Euler method. A forward Euler method has been imple-
mented. For the first time step a very small time step is chosen. Following this the Adams-Bashforth
scheme has also been employed. For the first time step, It uses the solution of the Forward Euler
scheme. The code is delineated in the Annex. Various cases has been observed by varying the Peclet
number (Pe) and the Courant number(C).

In the first case, the Pe has been chosen as 5. The Courant number (C) has been taken as small, 0.1
. The obtained result is shown in the Figure 1.For this case the method behaves well.

In the second case, Pe has been considered as 1. The C is chosen as 0.3. The obtained result
has been displayed in the Figure 2. The method, for this case, becomes unstable as C is comparatively
higher for the Pe=1.

In the third case, where Pe=10 and C=0.3 has been chosen. As in this case,Pe is a bit higher for
the same C=0.3, the method behaves well.It can be observed from the Figure 3.

Another case Pe=0.5 has been chosen, and C is considered as 1. In this case the method becomes
unstable as Pe is very low and C is high. The obtained unstable solutions have been presented in the
Figure 4.
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Figure 1: Comparison of the solution obtained using the Adams-Bashforth method for C=0.1 and
Pe=5 with the exact solution

Figure 2: Comparison of the solution obtained using the Adams-Bashforth method for C=0.3 and
Pe=1 with the Exact Solution
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Figure 3: Comparison of the solution obtained using the Adams-Bashforth method for C=0.3 and
Pe=10 with the exact solution

Figure 4: Comparison of the solution obtained using the Adams-Bashforth method for C=1 and
Pe=0.5 with the Exact Solution
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Another last two cases have been considered where a very small time step has been chosen. Pe is
chosen as 0.5 and C=0.1 in the first case, and Pe=10 and C=0.1 in the second case. In the first case
we obtain an unstable solution as the Pe is low instead of low C. In the second case, we obtain more
improved accurate solution as Pe is comparatively higher and C is low. The results has shown in the
Figure 5 and in the Figure 6. When C is increased, Adams-Basforth method does not behave well. A
few more cases have been considered for C=3,Pe=1;C=3,Pe=5; C=3,Pe=100; C=4,Pe=100. For all
these cases Adams-Basforth method gives unstable solutions as C is very high; instead of values of Pe.

Figure 5: Comparison of the solution obtained using the Adams-Bashforth method for C=0.1 and
Pe=0.5 with the exact solution

Padé R22 scheme:

This is an implicit fourth order two step method,which is unconditionally stable. It allows us to
use high-order time stepping schemes. Thus, accuracy can be improved drastically (obviously, for the
solvable frequencies (0 ≤ ξ ≤ π/4). The behaviour of the method has been studied for 1: C=3,Pe=1;2:
C=3,Pe=5; 3: C=3,Pe=100; 4: C=4,Pe=100.At high C values, this method behaves well in-comparison
to the Adams -Bashforth method. It can be observed from the Figures 7,8,9,10; where for these cases
the Adams-Bashforth was unstable for the same Pe, and C values. Figure 9, 10 shows relative errors
in amplitude and phase for the fourth-order method, R2,2. It is concluded that a Galerkin formulation
presents spatial instabilities in the presence of boundary layers. They need to be stabilised. At the
end two other cases(Pe=1,C=0.3;Pe=0.5,C=1) have been studied for which Adams-Bashforth scheeme
was unstable.The R2,2 scheme gives improved accurate results for these two cases. It can be observed
from the Figure 12 and Figure 14.
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Figure 6: Comparison of the solution obtained using the Adams-Bashforth method for C=0.1 and
Pe=10 with the exact solution

Figure 7: Comparison of the solution obtained using the R2,2 for C=3 and Pe=1 with the exact
solution
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Figure 8: Comparison of the solution obtained using the R2,2 for C=3 and Pe=5 with the exact
solution

Figure 9: Comparison of the solution obtained using the R2,2 for C=3 and Pe=100 with the exact
solution
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Figure 10: Comparison of the solution obtained using the R2,2 for C=4 and Pe=100 with the exact
solution

Figure 11: Comparison of the solution obtained using the R2,2 for C=0.1 and Pe=10 with the exact
solution
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Figure 12: Comparison of the solution obtained using the R2,2 for C=1 and Pe=0.5 with the exact
solution

Figure 13: Comparison of the solution obtained using the R2,2 for C=0.3 and Pe=10 with the exact
solution
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Figure 14: Comparison of the solution obtained using the R2,2 for C=0.3 and Pe=1 with the exact
solution

Time-discontinuous Galerkin:

Since the finite element interpolation is discontinuous at the space-time slab interfaces, it is use-
ful to employ the notation uh(t±

n) = limε→0+ u
h(tn ± ε). The weighted residual formulation of the

homogeneous linear convection-diffusion equation:∫∫
Qn w

h(uht + a.∇uh −∇.(ν∇uh) dΩ dt+
∫

Ωw
h(tn+)(uh(tn+)− uh(tn−)) dΩ = 0;

Linear finite element approximations are employed in both space and time, giving a third-order
accurate and unconditionally stable method.Adapting the developments in Section 3.10.1 (pure con-
vection) to the present convection-diffusion case,The following partitioned matrix system is obtained
for the nodal unknowns un+1 and un

+
:

(M + 2
3∆tC + 2

3ν∆tK)un+1 − (M− 1
3∆tC− 1

3ν∆tK)un
+

= 0

(M + 1
3∆tC + 1

3ν∆tK)un+1 + (M + 2
3∆tC + 2

3ν∆tK)un
+

= 2Mun
−

The matrices M (consistent mass), C (convection), and K (diffusion) are defined as:

Mab
e =

∑
e

∫
Ωe

Na Nb dΩ M = AeM e (A DENOTES THE ASSEMBLE OPERATOR

Cab
e =

∑
e

∫
Ωe

Na (a.∇Nb) dΩ C = AeCe

Kab
e =

∑
e

∫
Ωe

∇Na) (ν.∇Nb) dΩ K = AeKe

Where 1 ≤ a, b ≤ nen; nen is the number of element nodes.
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The condition un+1(1) = un
+

(1) = 1 is then enforced to satisfy the inlet condition. This third-
order accurate and unconditionally stable method requires the solution of an algebraic system double
the size of usual time-stepping algorithms. It is observed that, oscillations extending over the whole
computational domain characterize the Galerkin formulation. It is investigated that the level of the
spurious oscillations appears to decrease when the Courant number is increased.
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Adams Bash-forth Scheme:- 

disp('There are four integration schemes available ') 
disp('      [0] = Crank-Nicolson'); 
disp('      [1] = R22'); 
disp('      [2] = R33'); 
disp('      [4] = Adam-Basforth'); 
%disp('      [4] = Forward-Euler'); 
disp('and five methods to perform spatial discretization') 
disp('      [0] = Galerkin'); 
disp('      [1] = Least-Squares'); 
disp('      [2] = Streamline-Upwind Petrov-Galerkin (SUPG)'); 
disp('      [3] = Galerkin Least-Squares (GLS)'); 
disp('      [4] = Sub-Grid Scale (SGS)'); 
disp(' ') 
d_temp = input('Choose a method to perform time integration = '); 
d_esp = input('and another one for the spatial discretization  = ');   

 

------------------------------------- 

elseif d_temp == 4 
    method = 'Adams-Bashforth '; 
    W = 0; 
    w = 1;%%%% Start with Euler; Will change to Adams-Basforth in Galerkin1 
else 
    error('Unavailable time integration scheme') 
end 

% Solution 

 

if d_esp==0 && d_temp==4 
 Sol = Galerkin1(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);     
elseif d_esp == 0 && d_temp~=4 
 Sol = Galerkin(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd); 
elseif d_esp == 1 
    Sol = ILS(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd); 
elseif d_esp == 2 
    Sol = SUPG(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);           
elseif d_esp == 3 
    Sol = GLS(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);         
elseif d_esp == 4 
    Sol = SGS(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd); 
end 

---------------------------------------- 

function Sol = Galerkin1(T,s,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd1,bccd1) 

Time step loop: 

% Loop to compute the transient solution 
for p=1:nstep 
if p==1  %%%Forward Euler method loop 
    aux = dt*(-Kt*c + Mf); 
    F = []; 
    for i =1:n 
        F = [F; s(i)*aux]; 
    end 
    F = [F;bccd*0];     
    dc  = U\(L\F); 
    dc = reshape(dc(1:n*npoin),npoin,n); 
    c = c + sum(dc,2); 
    Sol = [Sol c];  



    s=1.5*s; %%%%w=1.5 for Adam basforth 

 
else 

  
    aux = dt*(-Kt*c+ Mf); 
    F = []; 
    for i =1:n 
     F = [F; s(i)*(aux)+0.5*Kt*dt*Sol(:,p-1)];%%%% for Adam basforth 
    end 
    F = [F;bccd*0];     
    dc  = U\(L\F); 
    dc = reshape(dc(1:n*npoin),npoin,n); 
    c = c + sum(dc,2); 
    Sol = [Sol c];  
end 

 


