# HOMEWORK UNSTEADY CONVECTION

-FINITE ELEMENTS IN FLUIDS-Marcos Boniquet

## -FINITE ELEMENTS IN FLUIDS-

For a transient advective, non-convective, non-reactive, system:

```
u_t + au_x = 0x \in (0, 1)t \in (0, 0.6)u(x,0) = u_0(x)x \in (0, 1)u(0,t) = 1t \in (0, 0.6)
```

```
with initial condition:
u_0(\mathbf{x}) = 1 if x \le 0.2
u_0(\mathbf{x}) = 0 otherwise
```

a=1; $h=\Delta x=2*10^{-2}$  $\Delta t=1,5*10^{-2}$ 

Where  $A^{*}\Delta u = (-Bu^{n} + f)$  is the LINEAR SYSTEM to solve.

- Compute Courant Number.
- Solve Problem using C-N in time and linear finite element for the Galerkin scheme in space. Is the solution accurate?
- Solve problem using 2nd order Lax-Wendroff method. Can we expect the solution to be accurate? If not, what changes are necessary?
- Solve problem with a 3d order Taylor-Galerkin method.

-FINITE ELEMENTS IN FLUIDS-

## **COURANT NUMBER**

C=|a|\*Δt/h=1\*1,5\*10<sup>-2</sup>/2\*10<sup>-2</sup>=0,75

C<sup>2</sup>=0,5625

- C-N (1D) unconditional stability
- TG2 (1D) stable if  $C^2 < \frac{1}{3} \rightarrow$  Possible instabilities!
- TG3 (1D) stable If C<sup>2</sup><1

Defining the matrices: M, K, & C:

Me = Me + w\_ig\*(N\_ig'\*N\_ig) Ke = Ke + w\_ig\*(Nx\_ig'\*Nx\_ig) Ce = Ce + w\_ig\*(N\_ig'\*Nx\_ig)

We choose problem type =4, which adequates program to initial conditions of this homework.

#### THETA METHOD+GALERKIN with C-N

$$\frac{u(t^{n+1}) - u(t^n)}{\triangle t} = u_t(t^n)$$

Following a time stepping discretization, trucating 2nd order term

and combining with advection formulae  $u_t + (\boldsymbol{a} \cdot \boldsymbol{\nabla})u = s$ 

we obtain:

$$(w, \frac{\Delta u}{\Delta t}) - \theta (\boldsymbol{\nabla} w, \boldsymbol{a} \Delta u) + \theta ((\boldsymbol{a} \cdot \boldsymbol{n}) w, \Delta u)_{\Gamma^{out}} = (\boldsymbol{\nabla} w, \boldsymbol{a} u^n) - ((\boldsymbol{a} \cdot \boldsymbol{n}) w, u^n)_{\Gamma^{out}} + (w, \theta h^{n+1} + (1-\theta) h^n)_{\Gamma^{in}_N} + (w, \theta s^{n+1} + (1-\theta) s^n)$$

<u>recall</u>: Galerkin W=N &  $\Delta u = N_i \Delta u_i$  U=N<sub>i</sub>U<sub>i</sub>, developing a bit and considering s=0 we obtain:

To evaluate accuracy we compare exact and calculated solution at last step and compare each point the function 'u' calculated to the exact solution.

Mean squared error=0.0751

#### THETA METHOD+GALERKIN with C-N LUMPED MASS MATRIX

Analogously,

% Loop on Gauss points
for ig = 1:ngaus
N\_ig = N(ig,:);
Nx\_ig = Nxi(ig,:)\*2/h;
w\_ig = wgp(ig)\*h/2;
Me = Me + w\_ig\*(N\_ig'\*N\_ig);
Ke = Ke + w\_ig\*(Nx\_ig'\*Nx\_ig);
Ce = Ce + w\_ig\*(N\_ig'\*Nx\_ig);
MLe(1,1)=w\_ig\*N\_ig(1);
MLe(2,2)=w\_ig\*N\_ig(2);

#### A = ML + 1/2\*a\*Δt\*C; B = -a\*Δt\*C;

Now the Mean squared error is **0.2677**, some accuracy has been lost with the approximation of M to  $M_1$ 

### TG2 (OR L-W) +GALERKIN (2ND ORDER)

Following a time stepping discretization, trucating 3nd order terms,

$$\frac{u(t^{n+1}) - u(t^n)}{\triangle t} = u_t(t^n) + \frac{1}{2} \triangle t \, u_{tt}(t^n) -$$

and combining with advection formulae  $u_t + ({m a} \cdot {m 
abla}) u = s$ 

we obtain:

$$\begin{split} \left(w, \frac{\Delta u}{\Delta t}\right) &= \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} w, u^n + \frac{\Delta t}{2} [s^n - (\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^n]\right) \\ &- \left((\boldsymbol{a} \cdot \boldsymbol{n}) w, u^n + \frac{\Delta t}{2} [s^n - (\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^n]\right)_{\Gamma^{out}} \\ &+ \left(w, h^{n+1/2}\right)_{\Gamma^{in}_N} + \left(w, s^n + \frac{\Delta t}{2} s^n_t\right) \end{split}$$

<u>recall</u>: Galerkin W=N &  $\Delta u = N_i^* \Delta u_i$  U=N<sub>i</sub>U<sub>i</sub>, developing a bit and considering s=0 we obtain:

-FINITE ELEMENTS IN FLUIDS-

Mean squared error makes no sense, it's **10<sup>18</sup> NOT STABLE** 

 $C^2=0,5625$ , so it's bigger than  $\frac{1}{3}$ . In order to make it a stable method whe should change Courant number, diminish it. This could be done by decreasing  $\Delta t$  (e.g.1,5\*10<sup>-2</sup>-->1\*10<sup>-2</sup>) or increasing h (e.g. 2\*10<sup>-2</sup>-->4\*10<sup>-2</sup>). For example doing the latter, the number of elements is 25, -the half-, and it becomes stable: 0,0542.

### TG2 (OR L-W) +GALERKIN (2ND ORDER) LUMPED MASS MATRIX

Recall:

MLe(1,1)=w\_ig\*N\_ig(1); MLe(2,2)=w\_ig\*N\_ig(2);

#### A = ML;B =- a\*C\*Δt-K\*Δt<sup>2</sup>\*a<sup>2</sup>/2;

Considering the new Courant number from the beginning, Mean squared error is , 0.9128. some accuracy has been lost with the approximation of M to M

Again, In order to make it a stable method whe should change Courant number, diminish it.

### TG3 + GALERKIN (3D ORDER)

Following a time stepping discretization, trucating 4th order terms,

$$\frac{u(t^{n+1}) - u(t^n)}{\triangle t} = u_t(t^n) + \frac{1}{2} \triangle t \, u_{tt}(t^n) + \frac{1}{6} \triangle t^2 u_{ttt}(t^n)$$

 $u_t + (\boldsymbol{a} \cdot \boldsymbol{\nabla})u = s$ and combining with advection formulae

we obtain:

$$\begin{split} \left(w, \frac{\Delta u}{\Delta t}\right) + \underbrace{\frac{\Delta t^2}{6} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} w, \boldsymbol{a} \cdot \boldsymbol{\nabla} \frac{\Delta u}{\Delta t}\right)}_{6} - \underbrace{\frac{\Delta t^2}{6} \left((\boldsymbol{a} \cdot \boldsymbol{n})w, \boldsymbol{a} \cdot \boldsymbol{\nabla} \frac{\Delta u}{\Delta t}\right)_{\Gamma^{out}}}_{6} \\ &= \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} w, u^n - \frac{\Delta t}{2} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u^n\right)\right) - \left((\boldsymbol{a} \cdot \boldsymbol{n})w, u^n - \frac{\Delta t}{2} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} u^n\right)\right)_{\Gamma^{out}} \\ &+ \frac{\Delta t}{2} \left(\boldsymbol{a} \cdot \boldsymbol{\nabla} w, s^{n+1/3}\right) - \frac{\Delta t}{2} \left((\boldsymbol{a} \cdot \boldsymbol{n})w, s^{n+1/3}\right) \\ &+ \left(w, \frac{3}{4} s^{n+2/3} + \frac{1}{4} s^n\right) + \left(w, \frac{3}{4} h^{n+2/3} + \frac{1}{4} h^n\right)_{\Gamma^{in}_N} \end{split}$$

<u>recall</u>: Galerkin W=N &  $\Delta u = N_i^* \Delta u_i$  U=N<sub>i</sub>U<sub>i</sub>, developing a bit and considering s=0 we obtain:

A = M + 
$$\Delta t^{2*}a^{2*}K/6$$
;  
B = -a\*C\*Δt+Δt<sup>2\*</sup>a<sup>2\*</sup>K/2;

Mean squared error is 0.0265.

#### **RESULTS**

Lumped matrix comparison and change of Courant for L-W case in or to stabilize it. TW3 appears to be the most precise method.





## HOMEWORK UNSTEADY CONVECTION

-FINITE ELEMENTS IN FLUIDS-

LW WITH COURANT<1/3

LW LUMPED MASS MATRIX WITH COURANT<1/3



TW3