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For a transient advective, non-convective, non-reactive, system:
utau =0 x€(0,1) tg(0,0.6)
u(x,0)=u,(x) xe&(0,1)
u(0,t)=1 t€(0,0.6)
with initial condition:
u,(x) =1 if x<0.2
u,(x) =0 otherwise
a=1;
h=Ax=2*10"
At=1,5*102
Where A*Au=(-Bu"+f) is the LINEAR SYSTEM to solve.

e Compute Courant Number.

e Solve Problem using C-N in time and linear finite element for the Galerkin scheme in
space. Is the solution accurate?

e Solve problem using 2nd order Lax-Wendroff method.
Can we expect the solution to be accurate? If not, what changes are necessary?

e Solve problem with a 3d order Taylor-Galerkin method.
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COURANT NUMBER
C=|a|*At/h=1*1,5*10%/2*10?=0,75

C?=0,5625

e C-N (1D) unconditional stability
e TG2 (1D) stable if C?><'s— Possible instabilities!
e TG3 (1D) stable If C?<1

Defining the matrices: M, K, & C:

Me = Me + W_lg*(N_lg '*N_ig)
Ke = Ke + w_ig*(Nx_ig"™Nx_ig)
Ce = Ce + w_ig*(N_ig"*Nx_ig)

We choose problem type =4, which adequates program to initial conditions of this
homework.

THETA METHOD+GALERKIN with C-N
w(t™ ) — u(th)
Following a time stepping discretization, trucating 2nd order term . At

u + (@ V)u=s

= uy(t")

and combining with advection formulae

we obtain:

(w, %) —0(Vw,a L) + H((G, “nu, &u.:] post
= (Vw.au") — ((a-n)w, u")

+ (w,0h" ! + (1 — 0)h"™)

[eried

A (w, 05" (1 - 0)s™)

I'N

recall: Galerkin W=N & Au=N;"Au; U=N,U; developing a bit and considering s=0 we obtain:

A =M + 1/2*a*At*C;
B = -a*At*C;
To evaluate accuracy we compare exact and calculated solution at last step and compare
each point the function ‘U’ calculated to the exact solution.

u,,.=u(:,nStep+1)’
X= Ucgge - UU;

Dif=sum(abs(X))/nPt (SQUARED DIFFERENCES)

Mean squared error=0.0751
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THETA METHOD+GALERKIN with C-N LUMPED MASS MATRIX

Analogously,

% Loop on Gauss points
for ig = 1:ngaus
N_ig = N(ig,:);
Nx_ig = Nxi(ig,:)*2/h;
w_ig = wgp(ig)*h/2;

Me = Me + w_ig*(N_ig"™N_ig);
Ke = Ke + w_ig*(Nx_ig"”Nx_ig);
Ce = Ce + w_ig*(N_ig™Nx_ig);

MLe(1,1)=w_ig*N_ig(1);
MLe(2,2)=w_ig*N_ig(2);

A =ML + 1/2*a*At*C;
B = -a*At*C;

Now the Mean squared error is 0.2677, some accuracy has been lost with the approximation
of Mto M

TG2 (OR L-W) +GALERKIN (2ND ORDER)

Following a time stepping discretization, trucating 3nd order terms,

w(t" ) — (e 1
* = N_f{f”) + 5&! 'H”(J'_”} -

and combining with advection formulae '’ +(a-Vju=s ,

we obtain:

A VAN

((U"'.‘! At ) = (ﬂ- . V'H}._ u" + 5 [S” _ (a . V:]"U.”])

_ (({1 -n)w,u" + % s" — (@ V)u" )l_,,mf

_ It
b s+ Bl

+ (w, h,““/z) 5

T
I

recall: Galerkin W=N & Au=N"Au; U=N,U, developing a bit and considering s=0 we obtain:
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A=M;
B =- a*C*At-K*At**a?/2;

Mean squared error makes no sense, it's 10'®* NOT STABLE

C?=0,5625 , so it's bigger than . In order to make it a stable method whe should change
Courant number, diminish it. This could be done by decreasing At (e.g.1,5*10%-->1*107?)
or increasing h (e.g. 2*10%-->4*10%). For example doing the latter, the number of elements
is 25, -the half- , and it becomes stable: 0,0542.

TG2 (OR L-W) +GALERKIN (2ND ORDER) LUMPED MASS MATRIX

Recall:

MLe(1,1)=w_ig*N_ig(1);
MLe(2,2)=w_ig*N_ig(2);
A =ML;
B =- a*C*At-K*At**a?/2;

Considering the new Courant number from the beginning, Mean squared error is , 0.9128.
some accuracy has been lost with the approximation of M to M

Again, In order to make it a stable method whe should change Courant number, diminish it.
TG3 + GALERKIN (3D ORDER)

Following a time stepping discretization, trucating 4th order terms,
w(t™ ) — u(t)
At

1 1, .
= H.f{l'”) + a.&f 'Hht(f,”} + ﬁ.&fz”frfilf-”;l

and combining with advection formulae U+ (a ' V)u =5 ,

we obtain:
A At? | Au At? Au
(u-._ E) + T ((L -Vu,a- VE) — T((a . n)u-, a - VE)IW,”.
= (a-Vuw,u" — %(G-V?I“)) — ((@-n)w,u" — %(a- VU)o
Ay n /i At 1) /:
t5 (@ Vw,s" 17 — 7(((1-71)11:75 A
. ijn-i—'l;'f} E 7 o f n+2/3 1 .
+ (w, 7 +75") + (w, h + 77" )y
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recall: Galerkin W=N & Au=N"Au; U=N,U, developing a bit and considering s=0 we obtain:

A = M + At*a?*K/6;
B = -a*C*At+At*a?*K/2;

Mean squared error is 0.0265.

RESULTS

Lumped matrix comparison and change of Courant for L-W case in or to stabilize it. TW3
appears to be the most precise method.
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