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Navier-Stokes numerical example

Problem formulation

Navier-Stokes problem:
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Discretization of the convective term for the Piccard’s method

Galerkin discretization:

The following code shows the discretization for the linearized form of the convection matrix
on the element level.

function [C] = ConvectionMatrix (X, T, referenceElement , velo)

v_igaus = N_ig*xu_e;
Ce = Ce + Ngp’s(v_igaus (1)*Nx+v_igaus (2)*Ny)*dvolu;

end
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Discretization of the Newton-Raphson scheme

The following code shows the discretization for the linearized form of the convection matrix
on the element level.

function [C1,C2] = ConvectionMatrix (X, T, referenceElement ,velo)

v_igaus = N_igxu_e;
Cel = Cel + Ngp’sx(v_igaus (1)*xNxt+v_igaus(2)*Ny)xdvolu;
Ce2 = Ce2 + Ngp’*([nx ; ny]*u_e) xNgpxdvolu;

The following code shows the implementation of the Newton-Raphson algorithm in the file
mainNavierStokes.m:

[C1,C2] = ConvectionMatrixNR (X, T, referenceElement ,velo);
Credl = Cl1(dofUnk,dofUnk);
Cred2 = C2(dofUnk ,dofUnk);

A = [Kred + Credl Gred’;
Gred  zeros(nunkP)];

Atot = A;
btot = [fred — (Cl1(dofUnk, dofDir))*valDir; zeros(nunkP  1)];

J = [Kred + Credl + Cred2 Gred’;
Gred  zeros(nunkP)];

F = Atotxsol0 — btot;
% Computation of wvelocity and pressure increment
sollnc =J\F;

% Update the solution

velolnc = zeros(ndofV , 1);

velolnc (dofUnk) = sollnc (1:nunkV);
presIlnc = sollnc (nunkV+1:end);

velo = velo + reshape(velolnc ,2,[]) 7;
pres = pres + preslnc;



Finite Elements in Fluids
Moritz Jokeit Homework 9 April 3, 2019

Results and convergence study

To compare the Piccard’s method with the Newton-Raphson scheme the cavity flow flow
problem was computed with quadrilateral elements (Q2Q1). Figure 1 and Figure 2 show
that in both cases the solution is stable. As expected, it is hard to see any differences with
respect to the accuracy of the results. A distinctive property of the two methods becomes
only visible when looking at the convergence plots in Figure 3 where the residual F is plotted
against the number of iterations. For the Piccard’s scheme a linear relation between the error
estimate and the number of iteration can be observed. The Newton-Raphson method on the
other hand shows a quadratic behaviour.
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Figure 1: Streamlines for the Q2Q1 element obtained with Piccard’s (left) and Newton-
Raphson (right) scheme

Figure 2: Streamlines for the Q2Q1 element obtained with Piccard’s (left) and Newton-
Raphson (right) scheme
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Figure 3: Convergence plots for the

scheme (right)
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Piccard’s scheme (left) and the Newton-Raphson




