
Unsteady Navier-Stokes problem

Arthur Lustman

April 25, 2019

1 Implicit Second order monolithic scheme

1.1 Mathematical Description

The monolithic schemes mathematical expression, starting from the theta method, where θ = 1/2

vn+1 − vn

∆t
− 1

2

(
f − (v · ∇)v + ν∇2v

)n+1
+

1

2
∇pn+1 =

1

2

(
f − (v · ∇)v + ν∇2v

)n
(1)

∇ · vn+1 = 0 (2)

The gradient of the velocity and the pressure are evaluated at tn+1. The first equation can be
rewritten

vn+1

∆t︸ ︷︷ ︸
1

∆tM

+
1

2
(vn+1 · ∇)vn+1︸ ︷︷ ︸
−C>(vn+1)

−1

2
ν∇2vn+1︸ ︷︷ ︸

K

+
1

2
∇pn+1 =

1

2
fn+

1

2
fn+1− 1

2
(vn · ∇)vn︸ ︷︷ ︸

C>vn

+
1

2
ν∇2vn︸ ︷︷ ︸

K

+
1

∆t
vn︸ ︷︷ ︸

1
∆tM

(3)
Note that the under-braced matrices are here to display from which terms those matrices comes
from and they do not embrace the exact value. They are the outcome of a finite element discretiza-
tion which is not described here. They have already been explained during the course but are still
rewritten here

K ←
∫

Ω

[gradN]>[gradN]dΩ (4)

G← −
∫

Ω

N̂
>
DdΩ (5)

f ←
∫

Ω

N>fdΩ (6)

M ←
∫

Ω

N>NdΩ (7)

C(vn)←
∑
e

∫
Ω

N>
[
vnx 0 vny 0
0 vnx 0 vny

]
[gradN] (8)

This leaves us with the following system of equation[
1

∆tM − 1
2C
>(vn+1) + 1

2K G>

G 0

] [
vn+1

pn+1

]
=

[
fn + 1

2C(vn)vn − 1
2Kvn + 1

∆tMvn

0

]
(9)

Or, in a simple way [
A(vn+1) G>

G 0

] [
vn+1

pn+1

]
=

[
bn

0

]
(10)

1.2 Newton-Raphson solution

This previous non-linear system of equation is computed using Newton-Raphson. The residual r
is described as

rn =

[
A(vn)vn + G>pn − b

Gvn

]
(11)

1

Finite Element for Fluids Arthur Lustman

For which the Jacobian, which is the derivative of the residual in terms of the unknows is necessary
to compute the solution

Jn =

[
drn

1

dv
drn

1

dp
drn

2

dv
drn

2

dp

]
=

[
drn

1

dv G>

G 0

]
(12)

For which the expression of the component
drn

1

dv is equal to

A(vn+1) +
∂C

∂v
vn+1 (13)

Where the partial derivative is computed using directional derivatives

D(w(v · ∇)v)[δv] = w(δv · ∇)v︸ ︷︷ ︸
∂C
∂v (v)

+w(v · ∇)δv︸ ︷︷ ︸
C(v)

(14)

∂C

∂v
(v)←

∑
e

∫
Ω

N>

[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy
∂y

]
NdΩ (15)

The solution is then computed as [
vn+1

pn+1

]
=

[
vn

pn

]
− (Jn)−1rn (16)

A characteristic of the Newton-Raphson convergence is the quadratic convergence. It should be
observed in the results when looking at the results.

1.3 Code Implementation

The implementation of this code is pretty straightforward, if taken as a start the code from the
previous homework, Stokes over a cavity flow problem. Two additional files computing the Mass
matrix and the partial derivative of C are needed and implemented. Though most of their lines is
common to the file StokesSystem who was computing the matrices K, G and f . For this reason,
most of the code is not written, only the loops (over the number of elements and the number of
gauss points) are stated and the modified lines.

Mass Matrix

func t i on M = CreateMass (X,T, re f e renceElement)
[. . .]

M = ze ro s (ndofV , ndofV) ;

f o r i e l em = 1 : nElem
[. . .]

Me = ze ro s (nedofV , nedofV) ;
f o r i g = 1 : ngaus

[. . .]
Me = Me + Ngp ’∗Ngp∗dvolu ;

end
M(Te dof , Te dof) = M(Te dof , Te dof) + Me;

end

Where Ngp are the shape functions related to the velocity.

2

Finite Element for Fluids Arthur Lustman

dC/dv

func t i on dC = dCdv(X,T, re ferenceElement , ve l o)
% ve lo : v e l o c i t y va lue s at the nodes
[. . .]

dC = ze ro s (ndofV , ndofV) ;

f o r i e l em = 1 : nElem
[. . .]
dCe = ze ro s (nedofV , nedofV) ;
% Element matr i ce s
Ve = ve lo (Te , :) ;
f o r i g = 1 : ngaus

[. . .]
gradV = [nx∗Ve (: , 1) ny∗Ve (: , 1) ; nx∗Ve (: , 2) ny∗Ve (: , 2)] ;
dCe = dCe + Ngp ’∗ gradV∗Ngp∗dvolu ;

end
% Assemble the element matr i ce s
dC(Te dof , Te dof) = dC(Te dof , Te dof) + dCe ;

end

These two files are needed for the Newton-Raphson solution method. The structure of the
code is given here in order to fully understand the solution procedure. The basic structure of the
problem is defined [

1
2K + 1

∆tM + First G>

G 0

] [
vk+1

pk+1

]
=

[
fk + Second

0

]
(17)

Where the variables First and Second are computed within each k iteration inside a time step.

First = −1

2
C>(vk) (18)

Second =
1

2
C(vk)vk − 1

2
Kvk +

1

∆t
Mvk (19)

Newton-Raphson

whi l e time step < end time step
whi l e t o l e r a n c e i s not met

compute C, dC/dV with vˆk
compute F i r s t and Second v a r i a b l e s
add t h e i r c o n t r i b u t i o n to the l e f t matrix and r i g h t vec to r

o f equat ion (17)

compute r e s i d u a l ˆk and Jacobian
s o l v e equat ion (16) to get vˆk+1 and pˆk+1
check i f r e s i d u a l < t o l e r a n c e

end
update s o l u t i o n [v ; p] ˆ k=[v ; p] ˆ k+1

end

1.4 Results

The Navier-Stokes problems is solved over the problem of cavity flow from the previous assignment.
The parameter for the time integration is the number of time steps nt, the time step ∆t and the

3

Finite Element for Fluids Arthur Lustman

tolerance, which is chosen to be 10−6. The solution has been computed two time with different
parameters :

• ∆t = 0.01s with 10 time steps

• ∆t = 0.1s with 10 time steps

The convergence is assured by the implicit scheme but a small ∆t should provide us precise results
and a small nt should assure us that it won’t be taking too long the reach the solution. The
graphical results are displayed in the following figures as well as the convergence of the residual.

The y axis of the convergence figures are in logarithmic scale. The convergence shows spike
patterns because approximately 2-3 iterations are necessary for each time step. The rate of conver-
gence is around ≈ 2, meaning the convergence is quadratic as it should be for a Newton-Raphson
algorithm.

Figure 1: Convergence for ∆t = 0.01 Figure 2: Graph of the pressure for ∆t = 0.01

Figure 3: Convergence for ∆t = 0.1 Figure 4: Graph of the pressure for ∆t = 0.1

4

Finite Element for Fluids Arthur Lustman

2 Algebraic splitting

The Navier-Stokes equations yields a system of equations to be solved at each time-step.(
A G>

G 0

)(
un+1

pn+1

)
=

(
fn+1

hn+1

)
(20)

With A = M + ∆t
(
K + C(vn+1)

)
. Thought this system of equation could be solved directly,

using the schur complement:(
GA−1G>

)
pn+1 = GA−1fn+1 − hn+1 (21)

Avn+1 = fn+1 −G>pn+1 (22)

But this type of solution tends to be quite computationally expensive as we have to compute the
inverse of a sparse matrix A which is dense.

The first step of this solution doesn’t need to use the inverse of the matrix in the case of a
direct solver, it remains cheap in case of rationally small matrices.

2.1 LU Step and A approximation

One way to evade this problem is to perform the algebraic splitting of the system of equation 20
in two triangular LU matrices. The process is defined on the slides and in the reference book page
304 and 305.

In this case the solution is divided in three simpler steps:

Av̂n+1 = fn+1 (23)(
GA−1G>

)
p̂n+1 = hn+1 −Gv̂n+1 (24)

Avn+1 = Av̂n+1 −G>pn+1 (25)

The computational time is reduced by using an approximation of A−1, which comes from ignoring
the inverse of all the other terms, except of the mass matrix M . Since it is a block diagonal matrix,
it is easy to inverse and keeps its sparsity. The three steps are now defined as

Av̂n+1 = fn+1 (26)(
GM−1G>

)
p̂n+1 = hn+1 −Gv̂n+1 (27)

Mvn+1 = M v̂n+1 −G>pn+1 (28)

2.2 Code Implementation

Since the first equation of the solver is non linear (equation (23)), there is a need of Newton-
Raphson or Picard method in order to solve it. This is first performed only for the velocity, which
become the intermediate velocity v̂. Since the Newton-Raphson code is precisely described in the
previous section, there is no need to cover it again. The two other equations (24) and (25) are
straightforward to implement.

Approximation A and Algebraic splitting

whi l e time step < end time step
whi l e t o l e r a n c e i s not met

[Newton−Raphson f o r v hat and reduced system]
end
S = G∗ inv (M)∗G’ ;
New Pressure = −S\G∗ v hat ;
New Velocity = M\(M∗ v hat − G’∗ New Pressure) ;
update s o l u t i o n [v ; p] ˆ k=[v ; p] ˆ k+1

end

5

Finite Element for Fluids Arthur Lustman

2.3 Results

The code can reach a stable solution but only for a reasonable Deltat. The quadratic convergence
is met when ∆t = 0.01 as it can be seen in the figure 5, but it is slightly too low with the time
updates when ∆t = 0.1. Yet the only trouble is the quadratic convergence in case ∆t is big since
the flow seem very good.

Figure 5: Convergence for ∆t = 0.01 Figure 6: Graph of the pressure for ∆t = 0.01

Figure 7: Convergence for ∆t = 0.1 Figure 8: Graph of the pressure for ∆t = 0.1

Figure 9: Flow for ∆t = 0.1

6

