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Introduction

Navier-Stokes equation rules the motion of viscous, incompressible, Newtonian fluids which 
represents the bast majority of fluid problems in our every day live, such as ocean current, 
atmospheric dynamics, air flow around a wing, a car etc. A characteristic parameter is the so called 
Reynolds number (Re), which accounts for the relation between inertia and viscous forces. For 
highly viscous fluids, Re is really low and inertia terms can be neglected, simplifying the equation 
to be solved in the so called Stokes Equation.

In this work, Stokes equation will be discretized and solved computationally, studying its behaviour 
for different elements. Later, inertia terms will be introduced and Navier-Stokes equation will be 
recovered, discretized and solved with MatLab.

Problem statement (Stokes)

Stokes equation weak form is obtained via Weighted Residuals and discretized by using Galerkin 
methods as follows:





That enables us to solve the Cavity problem which consist in a square domain of dimension one by 
one with impermeable walls except the one on the top. 

Results

Simulations done with MatLab provided the solution of the velocity and pressure, which allows to 
plot the velocity field and pressure field. Stream lines have been also plotted, all for different 
element types.

Using quadrilateral elements, quadratic for velocity and linear for pressure (Q2Q1), the mesh for 
10x10 elements in Figure 1. is obtained. 

Figure 1. Mesh of the domain for the velocity (left) and for the pressure (right).

With that mesh, the solution is:

Figure 2. Velocity field represented by vectors (left) and streamlines (right) for Q2Q1 elements.



                          
                             Figure 3. Pressure distribution over the domain.

If instead of Q2Q1 elements, Q1Q1 elements are used, that is linear for velocity and pressure. Then:

Figure 4. Mesh for the velocity (left) and for the pressure (right) with linear quadrilateral elements.

With Q1Q1 elements the solution obtained is the following:



Figure 5. Velocity field represented by vectors (left) and streamlines (right) for Q1Q1 elements.

               

                         Figure 6. Pressure distribution over the domain.

Comparing Q2Q1 elements with Q1Q1, it is clearly seen what Q2Q1 provide good solution. 
However, Q1Q1 elements does not perform well due to the existence of oscillation in pressure. 
Since pressure and velocity are coupled, those oscillations also affect the velocity field.
This behaviour is also seen when using triangular elements. In the following figures, quadratic 
triangular elements for velocity and triangular linear elements for velocity are used:



Figure 7. Mesh for the velocity with quadratic triangular elements (left) and for the pressure (right) 
with linear triangular elements. 

Figure 8. Velocity field represented by vectors (left) and streamlines (right).

Comparing Figure 8.with Figure 2. is observed that the solution obtained is good enough and 
represents a good solution to the cavity problem. Regarding pressure, from Figure 9. it is also seen 
that the pressure doesn’t present oscillations.



                                        Figure 9. Pressure distribution over the domain.

Doing the same but with linear triangles for both velocity and pressure:

Figure 10. Mesh for the velocity with linear triangular elements (left) and for the pressure (right) 
with linear triangular elements (P1P1). 



Figure 11. Velocity field represented by vectors (left) and streamlines (right).

                                         Figure 12. Pressure distribution over the domain.

Again, oscillations appear and the solution doesn’t represent the real behaviour of the system.
The reason for which oscillations appear for some elements is that those elements doesn’t fulfil the 
LBB (Ladyzhenskaya-Babuška-Brezzi) condition. For elements which are not stable because don’t 
fulfil LBB condition, stabilization techniques must be used. In our case, Galerkin Least Square 
stabilization has been used. 



This method consist in adding a new term:

Which will result in:

Although GLS method results in all those new methods, only L and fq have been implemented. The 
reason is that we are only interested to stabilize linear elements since quadratic elements are stable. 
When considering linear elements, G,fw  vanishes due to the second derivative,  the first term of K 
also vanishes for the same reason and the second term is zero due to τ2=0 for linear elements in 
order to guarantee stability and convergence.

That being said, the results for Q1Q1 elements are:

Figure 13. Velocity field represented by vectors (left) and streamlines (right) for Q1Q1 elements.



    Figure 14. Pressure distribution over the domain.

For P1P1 elements:

Figure 15. Velocity field represented by vectors (left) and streamlines (right) for P1P1 elements.



 
                                         Figure 16. Pressure distribution over the domain.

From previous figures, we clearly see how instabilities, which where present in Q1Q1 and P1P1, 
have disappeared at the cost of smoothing the behaviour of the pressure distribution.

Problem Statement (Navier-Stokes)



In this case, due to the non-linear term, the system of equations must be solved iteratively by 
finding the root using different methods, such as Picard or Newton-Rapson methods.

Results

When considering Re=100 and Q2Q1 elements, results obtained are:

Figure 17. Velocity field represented by vectors (left) and streamlines (right) for Q2Q1 elements.



                                     Figure 18. Pressure distribution over the domain.

Comparing the previous figures with those from Stokes equation, we see how velocity is no longer 
‘symmetrical’ with respect to the lateral faces. This is due to the inertia term which moves the 
solution to the direction of the inner flow. Pressure also shows a difference in the two picks of the 
lateral corners between the inner flow and the lateral face.

An other consideration is that those results are the same for Picard and Newton-Rapson method 
since we are solving the same equation. The only difference is the iterative method being used. This
is traduced to a different number of iterations needed to achieve the desired error, as it can be seen 
in Figure 18.

Figure 18. Logarithm of the error in terms of the number of iteration using Picard method (left) and
Newton-Rapson method (right).



As it can be seen, Newton-Rapson method gets the solution faster than Picard, since the error is 
reduced quadratically for N-R and linearly for Picard method.

To finish this work, it must be said that the results for P2P1 have not been shown since they look 
the same than those of Q2Q1. Including figures which doesn’t present any difference with respect to
the previous ones has no sense, so it has been decided not to include them.


