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This report for the Finite Element for Fluids class is split in two sections : the unsteady
convection problems and the implementation of a solution of a non-linear system of the Burger’s
equation.

1 Unsteady convection problems

1.1 Crank-Nicolson

(w, i?) + 0(w, (a - V)Au) = (w,0s" T + (1 - 0)s") — (w,a - Vu") (1)

(M+A2tc) Au=At(f — Cu™) 2)

The equations are translated to a simple problem Au = b. In here there are no source terms so f
in equal to zero.

' )

case 3 % Crank—Nicolson + Galerkin
A =M+ 1/2xaxdt=C;
B = —axdt«C;
methodName = 'CN’;

1.2 Lax-Wendroff

A At

eq‘ = —(a- V)" + S-(a-V)u" (3)
Which translated to the weak form

AitMAu = <—aC’ — A;azK> u” (4)

case 1 % Lax—Wendroff + Galerkin
A =M;
B = — axdtxC — 1/2«Kxaxaxdt*dt;
methodName = LW’ ;

1.3 Lumped Mass matrix

The definition of the Lumped mass matrix can be found on page 39 of the reference book, which
resolve in a simple change in the terms of the mass matrix. The following piece of code is necessary.
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for i = 1:length (M)
abba = 0;
for j = 1:length (M)
abba = abba + M(i,j);
M(i,j) = 0;
end
M(i,i) = abba;
end

1.4 Third-order Taylor Galerkin

At? 2\ Au n At 9 m
Which translated to the weak form
At? Au At
M- —d’K ) — =(-aC - —=d*K | u"
< 5 ¢ ) s ( aC 5 ¢ ) u (6)

case 5 % TG3
A =M + dtxdt*xaxaxK/6;
B = —dtxaxC—1/2xdtxdt+xaxa*K;
methodName = "TG3’;

1.5 Computational Results

The courant number is 0.75 with the chosen parameters. The LW method, which is stable up until
C? < 1/3 is unstable in this case. Using the lumped mass matrix actually raises the stability up to
C? < 1, which is displayed in the following figure. The CN method is unconditionally stable, but
using the lumped mass matrix means solving a different problem which resolve in a bigger error
on the solution. TG3 is stable for this problem parameters as its stability is C? < 1.
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2 Newton-Raphson method

In order to implement the Newton-Raphson method we need to build a new function that takes
exactly the same arguments as for the Picard method. The soltion is build by iteration where the
important components are the Jacobian matrix J which is the derivative of the f(U) function

f(U) =AWU)U — MU (7)

_ 4 _ 24
J—w—A(U)—i-aUU (8)

oC
= A(U) —i—At%U (9)
= A(U) + AtC (10)
T
for n = 1:nTimeSteps
U0 =U(:,n);

error .U = 1; k = 0;

while (error.U > 0.5e¢—5) && k < 20
C = computeConvectionMatrix (X,T,U0);
A =M+ AtxC + At+E«K;
f = AxU0 — M«xU(: ,n);
df = A + CxAt;
sol = U0 — df\f;
Ul = sol (1:m+1);
error-U = norm(U1-U0)/norm (U1 );
fprintf (’\t Iteration %d, error_-U=%e\n’,k,error_.U);
U0 = Ul; k = k+1;

end

U(:,n+1) = Ul;

end

Each time step took in average 3 iterations to compute. The solution is displayed in the
following figure.

Figure 6: Newton-Raphson



