
Finite Elements for Fluids - Coding

Arthur Lustman

March 20, 2019

This report for the Finite Element for Fluids class is split in two sections : the unsteady
convection problems and the implementation of a solution of a non-linear system of the Burger’s
equation.

1 Unsteady convection problems

1.1 Crank-Nicolson(
w,

∆u

∆t

)
+ θ(w, (a · ∇)∆u) = (w, θsn+1 + (1− θ)sn)− (w, a · ∇un) (1)(

M +
∆t

2
C

)
∆u = ∆t (f −Cun) (2)

The equations are translated to a simple problem Au = b. In here there are no source terms so f
in equal to zero.

case 3 % Crank−Nico l son + Galerk in
A = M + 1/2∗a∗dt∗C;
B = −a∗dt∗C;
methodName = ’CN’ ;

1.2 Lax-Wendroff
∆u

∆t
= −(a · ∇)un +

∆t

2
(a · ∇)2un (3)

Which translated to the weak form

1

∆t
M∆u =

(
−aC − ∆t

2
a2K

)
un (4)

case 1 % Lax−Wendroff + Galerk in
A = M;
B = − a∗dt∗C − 1/2∗K∗a∗a∗dt∗dt ;
methodName = ’LW’ ;

1.3 Lumped Mass matrix

The definition of the Lumped mass matrix can be found on page 39 of the reference book, which
resolve in a simple change in the terms of the mass matrix. The following piece of code is necessary.

1

Homework 3 Arthur Lustman

f o r i = 1 : l ength (M)
abba = 0 ;
f o r j = 1 : l ength (M)

abba = abba + M(i , j) ;
M(i , j) = 0 ;

end
M(i , i) = abba ;

end

1.4 Third-order Taylor Galerkin(
1− ∆t2

6
(a · ∇)2

)
∆u

∆t
= −(a · ∇)un +

∆t

2
(a · ∇)2un (5)

Which translated to the weak form(
M − ∆t2

6
a2K

)
∆u

∆t
=

(
−aC − ∆t

2
a2K

)
un (6)

case 5 % TG3
A = M + dt∗dt∗a∗a∗K/6 ;
B = −dt∗a∗C−1/2∗dt∗dt∗a∗a∗K;
methodName = ’TG3 ’ ;

1.5 Computational Results

The courant number is 0.75 with the chosen parameters. The LW method, which is stable up until
C2 < 1/3 is unstable in this case. Using the lumped mass matrix actually raises the stability up to
C2 < 1, which is displayed in the following figure. The CN method is unconditionally stable, but
using the lumped mass matrix means solving a different problem which resolve in a bigger error
on the solution. TG3 is stable for this problem parameters as its stability is C2 < 1.

2

Homework 3 Arthur Lustman

Figure 1: Lax-Wendroff Figure 2: Lumped Lax-Wendroff

Figure 3: Crank-Nicolson Figure 4: Lumped Crank-Nicolson

Figure 5: Taylor Galerkin 3rd order

3

Homework 3 Arthur Lustman

2 Newton-Raphson method

In order to implement the Newton-Raphson method we need to build a new function that takes
exactly the same arguments as for the Picard method. The soltion is build by iteration where the
important components are the Jacobian matrix J which is the derivative of the f(U) function

f(U) = A(U)U −MUn (7)

J =
df

dU
= A(U) +

∂A

∂U
U (8)

= A(U) + ∆t
∂C

∂U
U (9)

= A(U) + ∆tC (10)

T

f o r n = 1 : nTimeSteps
U0 = U(: , n) ;
e r ror U = 1 ; k = 0 ;
whi l e (e r ror U > 0 .5 e−5) && k < 20

C = computeConvectionMatrix (X,T, U0) ;
A = M + At∗C + At∗E∗K;
f = A∗U0 − M∗U(: , n) ;
df = A + C∗At ;
s o l = U0 − df \ f ;
U1 = s o l (1 :m+1);
e r ror U = norm(U1−U0)/norm(U1) ;
f p r i n t f (’\ t I t e r a t i o n %d , er ror U=%e\n ’ , k , e r ror U) ;
U0 = U1 ; k = k+1;

end
U(: , n+1) = U1 ;

end

Each time step took in average 3 iterations to compute. The solution is displayed in the
following figure.

Figure 6: Newton-Raphson

4

