
HM3 – REPORT

Stokes and Navier-Stokes

Finite Element in Fluids

Álvaro Rodríguez Luis

1. Stokes problem

The problem to be solved is finding the steady flow of a highly viscous (the

convective term can be neglected) isotropic incompressible fluid in a 2D domain,

where certain boundary conditions are applied. This is done solving the Stokes

steady equation:

using the provided code. Based on the code, the dynamic viscosity for this

problem is 𝜈 = 1 and the domain Ω is a square of size 1 × 1, with corners

{ (0,0) , (1,0) , (1,1) , (0,1) }. The source term, is set to zero in the MATLAB

function “SourceTerm”. The boundary conditions are set in the MATLAB

function “BC_red”, where the velocity is fixed to zero in all sides except for the

side 𝑦 = 1, where the velocity is set to 𝒗 = (1,0). The velocity in the four corners

is set to zero. These boundary conditions introduce a discontinuity in the

corners (0,1) and (1,1). Also, the pressure is set to zero in the corner (0,0).

First, the problem is solved using different element types:

- Q1Q1: quadrilateral mesh, linear in velocity and pressure. In the code:

 elemV = 0; degreeV = 1; degreeP = 1;

- Q2Q1: quadrilateral mesh, quadratic in velocity, linear in pressure.

 elemV = 0; degreeV = 1; degreeP = 1;

- P1P1: triangular mesh, linear in velocity and pressure.

 elemV = 0; degreeV = 1; degreeP = 1;

- P2P1: triangular mesh, quadratic in velocity, linear inpressure.

 elemV = 0; degreeV = 1; degreeP = 1;

And the following results are obtained for the pressure fields:

Figure 1. Mesh type Q1Q1

Figure 2. Mesh type Q2Q1

Figure 3. Mesh type P1P1

Figure 4. Mesh type P2P1

The results show that only meshes Q2Q1 and P2P1 are stable. Also, a singularity

in the pressure is observed in corners (0,1) and (1,1), where the discontinuity on

the velocity field is imposed with the boundary conditions.

In order to obtain stable results with the Q1Q1 and the P1P1 meshes, GLS

stabilization is implemented. With no stabilization, the discretization with FEM of

the weak form of the stokes equation yields the following system:

Where the matrices expressions are detailed in the class notes, and are already

implemented in the code.

For linear elements in velocity and pressure, with GLS stabilization, the original

system is modified as follows

Where ℎ is the element side size, and 𝛼0 = 1/3 is optimal for linear elements.

These modifications are implemented in the provided code as shown in the

Appendix, where the changes are highlighted in yellow, and the following results

for the pressure field are obtained:

Figure 5. Mesh type Q1Q1 with GLS

stabilization.

Figure 6. Mesh type P1P1 with GLS

stabilization.

Figures 5 and 6 show how GLS stabilization worked properly stabilizing the

results, but the obtained results are not equal to the results with Q2Q1 and

P2P1 meshes.

2. Navier-Stokes problem

The problem to be solved is finding the steady flow of an isotropic incompressible

fluid in a 2D domain, where certain boundary conditions are applied. This is done

solving the Navier-Stokes steady equation:

using the provided code. Based on the code, the dynamic viscosity for this

problem is 𝜈 = 1, and the domain and the boundary conditions are the same as

the described for the Stokes problem in previous section. The discretization with

FEM of the weak form of the stokes equation yields the following non-linear

system:

Where the matrices expressions are detailed in the class notes, and are already

implemented in the code, except for the convective term, 𝐂(𝐯), that had to be

included, using the following expression:

𝐂(𝐚) · 𝐯 = ∫ 𝛚 · (𝐚 · 𝛁)𝐯

𝛀

 𝐝𝛀

The modified code is shown in the Appendix, with the modifications highlighted

in yellow. Due to the convective term, the system is non-linear, thus an iterative

method must be used to solve it. In the given code the Picard method was already

implemented, and the following results are obtained solving the problem with this

method and a Q2Q1 mesh:

Figure 7. Pressure field results with Picard

method and Q2Q1 mesh.

Figure 8. Stream line results with Picard

method and Q2Q1 mesh.

Also, with the Picard method, the convergence was found to be linear, and for

this case, 13 iterations were required to solve the problem, as shown in Figure 9.

Figure 9. Convergence with Picard method and Q2Q1 mesh.

Finally, the problem can be solved with a Newton-Raphson method which was

not implemented in the provided code. Newton-Raphson is an iterative method

used for solving non-linear systems, 𝐫(𝐱) = 𝟎, given an initial estimation of the

solution, 𝐱𝟎. At each iteration, a linear system is solved and then the solution

approximation is updated until the convergence criterium is met:

where J is the Jacobian matrix of the function r. In this case:

𝐉 = (𝐊 + 𝐂(𝐯) + 𝐂∗(𝐯) 𝐆𝑇

𝐆 𝟎
)

where order to compute the matrix 𝐂∗(𝐯) =
𝛛𝐂(𝐯)

𝛛𝐯
· 𝐯, the following expression is

used:

𝐂∗(𝐚) · 𝐯 = ∫ 𝛚 · 𝛁𝐯 · 𝐚

𝛀

 𝐝𝛀

Once again, the modified code is shown in the Appendix, with the modifications

highlighted in yellow.

In this case, the results were exactly the same to the results obtained for the

Picard method, but the convergence was worse.

Figure 10. Pressure field results with NR

method and Q2Q1 mesh.

Figure 11. Stream line results with NR

method and Q2Q1 mesh.

Figure 12. Convergence with NR method and Q2Q1 mesh.

Annex – Code modifications

 Stokes problem

mainStokes.m

%... (previous code not changed)

% Matrices arising from the discretization

[K,G,L,f,fq] = StokesSystem(X,T,XP,TP,referenceElement);

K = mu*K;

[ndofP,ndofV] = size(G);

h = 0.5*(abs(dom(2)-dom(2))/nx + abs(dom(4)-dom(3))/nx);

tau = (1/3)*h^2/(4*mu);

L = tau*L;

fq = tau*fq;

% Prescribed velocity degrees of freedom

[dofDir,valDir,dofUnk,confined] = BC_red(X,dom,ndofV);

nunkV = length(dofUnk);

% Total system of equations

if confined

 nunkP = ndofP-1;

 disp(' ')

 disp('Confined flow. Pressure on lower left corner is set to zero');

 G(1,:) = [];

 L(1,:) = [];

 L(:,1) = [];

 fq(1) = [];

else

 nunkP = ndofP;

end

f = f - K(:,dofDir)*valDir;

Kred = K(dofUnk,dofUnk);

Gred = G(:,dofUnk);

fred = f(dofUnk);

A = [Kred Gred';

 Gred L];

b = [fred; fq];

%... (following code not changed)

StokesSystem.m

function [K,G,L,f,fq] = StokesSystem(X,T,XP,TP,referenceElement)

% [K,G,f] = StokesSystem(X,T,XP,TP,referenceElement)

% Matrices K, G and r.h.s vector f obtained after discretizing a Stokes

problem

%

% X,T: nodal coordinates and connectivities for velocity

% XP,TP: nodal coordinates and connectivities for pressure

% referenceElement: reference element properties(quadrature,shape functions…)

elem = referenceElement.elemV;

ngaus = referenceElement.ngaus;

wgp = referenceElement.GaussWeights;

N = referenceElement.N;

Nxi = referenceElement.Nxi;

Neta = referenceElement.Neta;

NP = referenceElement.NP;

ngeom = referenceElement.ngeom;

degV = referenceElement.degreeV;

degP = referenceElement.degreeP;

flag_GLS = 0;

if degV==1 && degP==1

 flag_GLS = 1;

end

% Number of elements and number of nodes in each element

[nElem,nenV] = size(T);

nenP = size(TP,2);

% Number of nodes

nPt_V = size(X,1);

if elem == 11

 nPt_V = nPt_V + nElem;

end

nPt_P = size(XP,1);

% Number of degrees of freedom

nedofV = 2*nenV;

nedofP = nenP;

ndofV = 2*nPt_V;

ndofP = nPt_P;

K = zeros(ndofV,ndofV);

G = zeros(ndofP,ndofV);

L = zeros(ndofP,ndofP);

f = zeros(ndofV,1);

fq = zeros(ndofP,1);

% Loop on elements

for ielem = 1:nElem

 % Global number of the nodes in element ielem

 Te = T(ielem,:);

 TPe = TP(ielem,:);

 % Coordinates of the nodes in element ielem

 Xe = X(Te(1:ngeom),:);

 % Degrees of freedom in element ielem

 Te_dof = reshape([2*Te-1; 2*Te],1,nedofV);

 TPe_dof = TPe;

 % Element matrices

 [Ke,Ge,Le,fe,fqe] = EleMatStokes(Xe,ngeom,nedofV,nedofP, ...

 ...ngaus,wgp,N,Nxi,Neta,NP,flag_GLS);

 % Assemble the element matrices

 K(Te_dof, Te_dof) = K(Te_dof, Te_dof) + Ke;

 G(TPe_dof,Te_dof) = G(TPe_dof,Te_dof) + Ge;

 L(TPe_dof,TPe_dof) = L(TPe_dof,TPe_dof) + Le;

 f(Te_dof) = f(Te_dof) + fe;

 fq(TPe_dof) = fq(TPe_dof) + fqe;

end

%%%

function [Ke,Ge,Le,fe,fqe] = EleMatStokes(Xe,ngeom,nedofV,nedofP, ...

 ... ngaus,wgp,N,Nxi,Neta,NP,flag_GLS)

Ke = zeros(nedofV,nedofV);

Ge = zeros(nedofP,nedofV);

Le = zeros(nedofP,nedofP);

fe = zeros(nedofV,1);

fqe = zeros(nedofP,1);

if flag_GLS~=0 && flag_GLS~=1

 error('GLS flag must be either 0 or 1')

end

% Loop on Gauss points

for ig = 1:ngaus

 N_ig = N(ig,:);

 Nxi_ig = Nxi(ig,:);

 Neta_ig = Neta(ig,:);

 NP_ig = NP(ig,:);

 Jacob = [

 Nxi_ig(1:ngeom)*(Xe(:,1)) Nxi_ig(1:ngeom)*(Xe(:,2))

 Neta_ig(1:ngeom)*(Xe(:,1)) Neta_ig(1:ngeom)*(Xe(:,2))

];

 dvolu = wgp(ig)*det(Jacob);

 res = Jacob\[Nxi_ig;Neta_ig];

 nx = res(1,:);

 ny = res(2,:);

 Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)];

 % Gradient

 Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)];

 Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)];

 % Divergence

 dN = reshape(res,1,nedofV);

 Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu;

 Ge = Ge - NP_ig'*dN*dvolu;

 x_ig = N_ig(1:ngeom)*Xe;

 f_igaus = SourceTerm(x_ig);

 fe = fe + Ngp'*f_igaus*dvolu;

 if flag_GLS == 1 % GLS only for linear elements in velocity and pressure

 Le = Le - (nx'*nx+ny'*ny)*dvolu;

 fqe = fqe + [nx; ny]'*f_igaus*dvolu;

 end

end

 Navier-Stokes problem

mainNavierStokes.m

%...previous code (omitted)

method = 1; %[0: Piccard, 1:NR]

if method == 0

 %...Provided Picard algorithm (omitted)

elseif method == 1

 while iter < 100

 fprintf('Iteration = %d\n',iter);

 iterVec = [iterVec iter];

 [C,dC] = ConvectionMatrix(X,T,referenceElement,velo);

 Cred = C(dofUnk,dofUnk);

 dCred = dC(dofUnk,dofUnk);

 Atot = A;

 Atot(1:nunkV,1:nunkV) = A(1:nunkV,1:nunkV) + Cred;

 btot = [fred - C(dofUnk,dofDir)*valDir; zeros(nunkP,1)];

 J = Atot;

 J(1:nunkV,1:nunkV) = J(1:nunkV,1:nunkV) + dCred;

 % Computation of residual

 res = Atot*sol0-btot;

 % Computation of velocity and pressure increment

 solInc = -J\res;

 % Update the solution

 veloInc = zeros(ndofV,1);

 veloInc(dofUnk) = solInc(1:nunkV);

 presInc = solInc(nunkV+1:end);

 velo = velo + reshape(veloInc,2,[])';

 pres = pres + presInc;

 % Check convergence

 delta1 = max(abs(veloInc));

 delta2 = max(abs(res));

 fprintf('Velocity increment=%8.6e, Residue max=%8.6e\n', ...

 ... delta1,delta2);

 resVec = [resVec delta2];

 if delta1 < tol*max(max(abs(velo))) && delta2 < tol

 fprintf('\nConvergence achieved in iteration number %g\n',iter);

 break

 end

 % Update variables for next iteration

 veloVect = reshape(velo',ndofV,1);

 sol0 = [veloVect(dofUnk); pres];

 iter = iter + 1;

 end

else

 error('Iterative method not available')

end

%...following code (omitted, includes new lines to plot the convergence graph)

ConvectionMatrix.m (the whole function is new)

function [C,dC] = ConvectionMatrix(X,T,referenceElement,velo)

elem = referenceElement.elemV;

ngaus = referenceElement.ngaus;

wgp = referenceElement.GaussWeights;

N = referenceElement.N;

Nxi = referenceElement.Nxi;

Neta = referenceElement.Neta;

ngeom = referenceElement.ngeom;

% Number of elements and number of nodes in each element

[nElem,nenV] = size(T);

% Number of nodes

nPt_V = size(X,1);

if elem == 11

 nPt_V = nPt_V + nElem;

end

% Number of degrees of freedom

nedofV = 2*nenV;

ndofV = 2*nPt_V;

C = zeros(ndofV,ndofV);

dC = zeros(ndofV,ndofV);

% Loop on elements

for ielem = 1:nElem

 % Global number of the nodes in element ielem

 Te = T(ielem,:);

 % Coordinates of the nodes in element ielem

 Xe = X(Te(1:ngeom),:);

 % Velocities at the nodes in element ielem

 Ve = velo(Te(1:ngeom),:);

 % Degrees of freedom in element ielem

 Te_dof = reshape([2*Te-1; 2*Te],1,nedofV);

 % Element matrices

 [Ce,dCe] = EleMatC(Xe,Ve,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta);

 % Assemble the element matrices

 C(Te_dof, Te_dof) = C(Te_dof, Te_dof) + Ce;

 dC(Te_dof, Te_dof) = dC(Te_dof, Te_dof) + dCe;end

end

function [Ce,dCe] = EleMatC(Xe,Ve,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta)

Ce = zeros(nedofV,nedofV);

dCe = zeros(nedofV,nedofV);

for ig = 1:ngaus

 N_ig = N(ig,:);

 Nxi_ig = Nxi(ig,:);

 Neta_ig = Neta(ig,:);

 Jacob = [

 Nxi_ig(1:ngeom)*(Xe(:,1)) Nxi_ig(1:ngeom)*(Xe(:,2))

 Neta_ig(1:ngeom)*(Xe(:,1)) Neta_ig(1:ngeom)*(Xe(:,2))

];

 dvolu = wgp(ig)*det(Jacob);

 res = Jacob\[Nxi_ig;Neta_ig];

 nx = res(1,:);

 ny = res(2,:);

 Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)];

 % Gradient

 Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)];

 Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)];

 v_ig = N_ig(1:ngeom)*Ve;

 Ce = Ce + Ngp'*(v_ig(1)*Nx+v_ig(2)*Ny)*dvolu;

 dCe = dCe + Ngp'*[nx; ny]*Ve*Ngp*dvolu;

end

end

