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1. Stokes problem 

The problem to be solved is finding the steady flow of a highly viscous (the 

convective term can be neglected) isotropic incompressible fluid in a 2D domain, 

where certain boundary conditions are applied. This is done solving the Stokes 

steady equation:  

 

using the provided code. Based on the code, the dynamic viscosity for this 

problem is 𝜈 = 1 and the domain Ω is a square of size 1 × 1, with corners 

{ (0,0) , (1,0) , (1,1) , (0,1) }. The source term, is set to zero in the MATLAB 

function “SourceTerm”. The boundary conditions are set in the MATLAB 

function “BC_red”, where the velocity is fixed to zero in all sides except for the 

side 𝑦 = 1, where the velocity is set to 𝒗 = (1,0). The velocity in the four corners 

is set to zero. These boundary conditions introduce a discontinuity in the 

corners (0,1) and (1,1). Also, the pressure is set to zero in the corner (0,0). 

First, the problem is solved using different element types: 

- Q1Q1: quadrilateral mesh, linear in velocity and pressure. In the code:  

 
 elemV = 0; degreeV = 1; degreeP = 1; 

 

- Q2Q1: quadrilateral mesh, quadratic in velocity, linear in pressure.  

 
 elemV = 0; degreeV = 1; degreeP = 1; 

 

- P1P1: triangular mesh, linear in velocity and pressure.  

 
 elemV = 0; degreeV = 1; degreeP = 1; 

 

- P2P1: triangular mesh, quadratic in velocity, linear inpressure. 

 
 elemV = 0; degreeV = 1; degreeP = 1; 



And the following results are obtained for the pressure fields: 

 

Figure 1. Mesh type Q1Q1 

 

Figure 2. Mesh type Q2Q1 

 

Figure 3. Mesh type P1P1 

 

Figure 4. Mesh type P2P1 

 

The results show that only meshes Q2Q1 and P2P1 are stable. Also, a singularity 

in the pressure is observed in corners (0,1) and (1,1), where the discontinuity on 

the velocity field is imposed with the boundary conditions. 

In order to obtain stable results with the Q1Q1 and the P1P1 meshes, GLS 

stabilization is implemented. With no stabilization, the discretization with FEM of 

the weak form of the stokes equation yields the following system: 

 

 

Where the matrices expressions are detailed in the class notes, and are already 

implemented in the code. 



For linear elements in velocity and pressure, with GLS stabilization, the original 

system is modified as follows 

 

 

 

 

Where ℎ is the element side size, and 𝛼0 = 1/3 is optimal for linear elements. 

These modifications are implemented in the provided code as shown in the 

Appendix, where the changes are highlighted in yellow, and the following results 

for the pressure field are obtained: 

 

Figure 5. Mesh type Q1Q1 with GLS 

stabilization. 

 

Figure 6. Mesh type P1P1 with GLS 

stabilization. 

 

Figures 5 and 6 show how GLS stabilization worked properly stabilizing the 

results, but the obtained results are not equal to the results with Q2Q1 and 

P2P1 meshes. 

  



2. Navier-Stokes problem 

The problem to be solved is finding the steady flow of an isotropic incompressible 

fluid in a 2D domain, where certain boundary conditions are applied. This is done 

solving the Navier-Stokes steady equation: 

 

using the provided code. Based on the code, the dynamic viscosity for this 

problem is 𝜈 = 1, and the domain and the boundary conditions are the same as 

the described for the Stokes problem in previous section. The discretization with 

FEM of the weak form of the stokes equation yields the following non-linear 

system: 

 

Where the matrices expressions are detailed in the class notes, and are already 

implemented in the code, except for the convective term, 𝐂(𝐯), that had to be 

included, using the following expression: 

𝐂(𝐚) · 𝐯 = ∫ 𝛚 · (𝐚 · 𝛁)𝐯
 

𝛀

 𝐝𝛀 

The modified code is shown in the Appendix, with the modifications highlighted 

in yellow. Due to the convective term, the system is non-linear, thus an iterative 

method must be used to solve it. In the given code the Picard method was already 

implemented, and the following results are obtained solving the problem with this 

method and a Q2Q1 mesh: 

 

Figure 7. Pressure field results with Picard 

method and Q2Q1 mesh. 

 

Figure 8. Stream line results with Picard 

method and Q2Q1 mesh. 



Also, with the Picard method, the convergence was found to be linear, and for 

this case, 13 iterations were required to solve the problem, as shown in Figure 9. 

 

Figure 9. Convergence with Picard method and Q2Q1 mesh. 

 

Finally, the problem can be solved with a Newton-Raphson method which was 

not implemented in the provided code. Newton-Raphson is an iterative method 

used for solving non-linear systems, 𝐫(𝐱) = 𝟎, given an initial estimation of the 

solution, 𝐱𝟎. At each iteration, a linear system is solved and then the solution 

approximation is updated until the convergence criterium is met: 

 

 

where J is the Jacobian matrix of the function r. In this case: 

 

𝐉 =  (𝐊 + 𝐂(𝐯) + 𝐂∗(𝐯) 𝐆𝑇

𝐆 𝟎
) 

where order to compute the matrix 𝐂∗(𝐯) =
𝛛𝐂(𝐯)

𝛛𝐯
· 𝐯, the following expression is 

used: 

𝐂∗(𝐚) · 𝐯 = ∫ 𝛚 · 𝛁𝐯 · 𝐚
 

𝛀

 𝐝𝛀 

Once again, the modified code is shown in the Appendix, with the modifications 

highlighted in yellow. 



In this case, the results were exactly the same to the results obtained for the 

Picard method, but the convergence was worse. 

 

 

Figure 10. Pressure field results with NR 

method and Q2Q1 mesh. 

 

Figure 11. Stream line results with NR 

method and Q2Q1 mesh. 

 

Figure 12. Convergence with NR method and Q2Q1 mesh. 

 

 

 

 

  



Annex – Code modifications 

 

 Stokes problem 

mainStokes.m 

%... (previous code not changed) 

 

% Matrices arising from the discretization 

[K,G,L,f,fq] = StokesSystem(X,T,XP,TP,referenceElement); 

K = mu*K; 

[ndofP,ndofV] = size(G); 

 

h = 0.5*(abs(dom(2)-dom(2))/nx + abs(dom(4)-dom(3))/nx); 

tau = (1/3)*h^2/(4*mu); 

L = tau*L; 

fq = tau*fq; 

 

 

% Prescribed velocity degrees of freedom 

[dofDir,valDir,dofUnk,confined] = BC_red(X,dom,ndofV); 

nunkV = length(dofUnk); 

 

% Total system of equations 

if confined 

   nunkP = ndofP-1; 

   disp(' ') 

   disp('Confined flow. Pressure on lower left corner is set to zero'); 

   G(1,:) = []; 

   L(1,:) = []; 

   L(:,1) = []; 

   fq(1) = []; 

else 

   nunkP = ndofP; 

end 

 

f = f - K(:,dofDir)*valDir; 

Kred = K(dofUnk,dofUnk); 

Gred = G(:,dofUnk); 

fred = f(dofUnk); 

 

A = [Kred   Gred'; 

     Gred   L]; 

b = [fred;  fq]; 

 

%... (following code not changed) 

 

 

 

 



StokesSystem.m 

function [K,G,L,f,fq] = StokesSystem(X,T,XP,TP,referenceElement) 

% [K,G,f] = StokesSystem(X,T,XP,TP,referenceElement) 

% Matrices K, G and r.h.s vector f obtained after discretizing a Stokes 

problem 

% 

% X,T: nodal coordinates and connectivities for velocity 

% XP,TP: nodal coordinates and connectivities for pressure 

% referenceElement: reference element properties(quadrature,shape functions…) 

 

elem = referenceElement.elemV; 

ngaus = referenceElement.ngaus; 

wgp = referenceElement.GaussWeights; 

N = referenceElement.N; 

Nxi = referenceElement.Nxi; 

Neta = referenceElement.Neta; 

NP = referenceElement.NP; 

ngeom = referenceElement.ngeom; 

degV = referenceElement.degreeV; 

degP = referenceElement.degreeP; 

flag_GLS = 0; 

if degV==1 && degP==1 

    flag_GLS = 1; 

end 

% Number of elements and number of nodes in each element 

[nElem,nenV] = size(T); 

nenP = size(TP,2); 

% Number of nodes 

nPt_V = size(X,1); 

if elem == 11 

    nPt_V = nPt_V + nElem; 

end 

nPt_P = size(XP,1); 

% Number of degrees of freedom 

nedofV = 2*nenV; 

nedofP = nenP; 

ndofV = 2*nPt_V; 

ndofP = nPt_P; 

 

K = zeros(ndofV,ndofV); 

G = zeros(ndofP,ndofV); 

L = zeros(ndofP,ndofP); 

f = zeros(ndofV,1); 

fq = zeros(ndofP,1); 

% Loop on elements 

for ielem = 1:nElem 

    % Global number of the nodes in element ielem 

    Te = T(ielem,:); 

    TPe = TP(ielem,:); 

    % Coordinates of the nodes in element ielem 

    Xe = X(Te(1:ngeom),:); 

    % Degrees of freedom in element ielem 

    Te_dof = reshape([2*Te-1; 2*Te],1,nedofV); 

    TPe_dof = TPe; 



 

    % Element matrices 

    [Ke,Ge,Le,fe,fqe] = EleMatStokes(Xe,ngeom,nedofV,nedofP, ... 

                                 ...ngaus,wgp,N,Nxi,Neta,NP,flag_GLS); 

    % Assemble the element matrices 

    K(Te_dof, Te_dof) = K(Te_dof, Te_dof) + Ke; 

    G(TPe_dof,Te_dof) = G(TPe_dof,Te_dof) + Ge; 

    L(TPe_dof,TPe_dof) = L(TPe_dof,TPe_dof) + Le; 

    f(Te_dof) = f(Te_dof) + fe; 

    fq(TPe_dof) = fq(TPe_dof) + fqe; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Ke,Ge,Le,fe,fqe] = EleMatStokes(Xe,ngeom,nedofV,nedofP, ... 

                                     ... ngaus,wgp,N,Nxi,Neta,NP,flag_GLS) 

Ke = zeros(nedofV,nedofV); 

Ge = zeros(nedofP,nedofV); 

Le = zeros(nedofP,nedofP); 

fe = zeros(nedofV,1); 

fqe = zeros(nedofP,1); 

if flag_GLS~=0 && flag_GLS~=1 

    error('GLS flag must be either 0 or 1') 

end 

% Loop on Gauss points 

for ig = 1:ngaus 

    N_ig    = N(ig,:); 

    Nxi_ig  = Nxi(ig,:); 

    Neta_ig = Neta(ig,:); 

    NP_ig = NP(ig,:); 

    Jacob = [ 

        Nxi_ig(1:ngeom)*(Xe(:,1)) Nxi_ig(1:ngeom)*(Xe(:,2)) 

        Neta_ig(1:ngeom)*(Xe(:,1)) Neta_ig(1:ngeom)*(Xe(:,2)) 

        ]; 

    dvolu = wgp(ig)*det(Jacob); 

    res = Jacob\[Nxi_ig;Neta_ig]; 

    nx = res(1,:); 

    ny = res(2,:); 

    Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)]; 

    % Gradient 

    Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)]; 

    Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)]; 

    % Divergence 

    dN = reshape(res,1,nedofV); 

 

    Ke = Ke + (Nx'*Nx+Ny'*Ny)*dvolu; 

    Ge = Ge - NP_ig'*dN*dvolu; 

    x_ig = N_ig(1:ngeom)*Xe; 

    f_igaus = SourceTerm(x_ig); 

    fe = fe + Ngp'*f_igaus*dvolu; 

    if flag_GLS == 1  % GLS only for linear elements in velocity and pressure 

        Le = Le - (nx'*nx+ny'*ny)*dvolu; 

        fqe = fqe + [nx; ny]'*f_igaus*dvolu; 

    end 

end 



 Navier-Stokes problem 

mainNavierStokes.m 

%...previous code (omitted) 

method = 1; %[0: Piccard, 1:NR] 

if method == 0 

    %...Provided Picard algorithm (omitted) 

elseif method == 1 

    while iter < 100 

        fprintf('Iteration = %d\n',iter); 

        iterVec = [iterVec iter]; 

 

        [C,dC] = ConvectionMatrix(X,T,referenceElement,velo); 

        Cred = C(dofUnk,dofUnk); 

        dCred = dC(dofUnk,dofUnk); 

 

        Atot = A; 

        Atot(1:nunkV,1:nunkV) = A(1:nunkV,1:nunkV) + Cred; 

        btot = [fred - C(dofUnk,dofDir)*valDir; zeros(nunkP,1)]; 

 

        J = Atot; 

        J(1:nunkV,1:nunkV) = J(1:nunkV,1:nunkV) + dCred; 

 

        % Computation of residual 

        res = Atot*sol0-btot; 

        % Computation of velocity and pressure increment 

        solInc = -J\res; 

        % Update the solution 

        veloInc = zeros(ndofV,1); 

        veloInc(dofUnk) = solInc(1:nunkV); 

        presInc = solInc(nunkV+1:end); 

        velo = velo + reshape(veloInc,2,[])'; 

        pres = pres + presInc; 

 

        % Check convergence 

        delta1 = max(abs(veloInc)); 

        delta2 = max(abs(res)); 

        fprintf('Velocity increment=%8.6e, Residue max=%8.6e\n', ... 

                 ... delta1,delta2); 

        resVec = [resVec delta2]; 

        if delta1 < tol*max(max(abs(velo))) && delta2 < tol 

            fprintf('\nConvergence achieved in iteration number %g\n',iter); 

            break 

        end 

        % Update variables for next iteration 

        veloVect = reshape(velo',ndofV,1); 

        sol0 = [veloVect(dofUnk); pres]; 

        iter = iter + 1; 

    end 

else 

    error('Iterative method not available') 

end 

%...following code (omitted, includes new lines to plot the convergence graph) 



 

ConvectionMatrix.m (the whole function is new) 

function [C,dC] = ConvectionMatrix(X,T,referenceElement,velo) 

elem = referenceElement.elemV; 

ngaus = referenceElement.ngaus; 

wgp = referenceElement.GaussWeights; 

N = referenceElement.N; 

Nxi = referenceElement.Nxi; 

Neta = referenceElement.Neta; 

ngeom = referenceElement.ngeom; 

% Number of elements and number of nodes in each element 

[nElem,nenV] = size(T); 

% Number of nodes 

nPt_V = size(X,1); 

if elem == 11 

    nPt_V = nPt_V + nElem; 

end 

% Number of degrees of freedom 

nedofV = 2*nenV; 

ndofV = 2*nPt_V; 

 

C = zeros(ndofV,ndofV); 

dC = zeros(ndofV,ndofV); 

% Loop on elements 

for ielem = 1:nElem 

    % Global number of the nodes in element ielem 

    Te = T(ielem,:); 

    % Coordinates of the nodes in element ielem 

    Xe = X(Te(1:ngeom),:); 

    % Velocities at the nodes in element ielem 

    Ve = velo(Te(1:ngeom),:); 

    % Degrees of freedom in element ielem 

    Te_dof = reshape([2*Te-1; 2*Te],1,nedofV); 

    % Element matrices 

    [Ce,dCe] = EleMatC(Xe,Ve,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta); 

    % Assemble the element matrices 

    C(Te_dof, Te_dof) = C(Te_dof, Te_dof) + Ce; 

    dC(Te_dof, Te_dof) = dC(Te_dof, Te_dof) + dCe;end 

 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

function [Ce,dCe] = EleMatC(Xe,Ve,ngeom,nedofV,ngaus,wgp,N,Nxi,Neta) 

 

Ce = zeros(nedofV,nedofV); 

dCe = zeros(nedofV,nedofV); 

 

for ig = 1:ngaus 

    N_ig    = N(ig,:); 

    Nxi_ig  = Nxi(ig,:); 

    Neta_ig = Neta(ig,:); 

    Jacob = [ 

        Nxi_ig(1:ngeom)*(Xe(:,1)) Nxi_ig(1:ngeom)*(Xe(:,2)) 

        Neta_ig(1:ngeom)*(Xe(:,1)) Neta_ig(1:ngeom)*(Xe(:,2)) 

        ]; 

    dvolu = wgp(ig)*det(Jacob); 

    res = Jacob\[Nxi_ig;Neta_ig]; 

    nx = res(1,:); 

    ny = res(2,:); 

 

    Ngp = [reshape([1;0]*N_ig,1,nedofV); reshape([0;1]*N_ig,1,nedofV)]; 

    % Gradient 

    Nx = [reshape([1;0]*nx,1,nedofV); reshape([0;1]*nx,1,nedofV)]; 

    Ny = [reshape([1;0]*ny,1,nedofV); reshape([0;1]*ny,1,nedofV)]; 

 

    v_ig = N_ig(1:ngeom)*Ve; 

    Ce = Ce + Ngp'*(v_ig(1)*Nx+v_ig(2)*Ny)*dvolu; 

    dCe = dCe + Ngp'*[nx; ny]*Ve*Ngp*dvolu; 

 

end 

 

end 

 


