

FINITE ELEMENTS

IN FLUIDS

Homework 3

Unsteady convection and Burger’s equation

Author: Cristina García Albela

MsC in Computational Mechanics

1D Unsteady convection problem

{

𝑢𝑡 + 𝑎𝑢𝑥 = 0 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 0.6)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ (0,1)

𝑢(0, 𝑡) = 1 𝑡 ∈ (0, 0.06]

𝑢0 = {
1 𝑖𝑓 𝑥 ≤ 0.2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎 = 1 Δ𝑥 = 2 ∙ 10−2 Δ𝑡 = 1.5 ∙ 10−2

The propagation of a steep from is going to be studied under 1D problem conditions. The problem

takes as the unit the convection speed 𝑎, and introduces a discontinuity that will be initially located

at point 𝑥 = 0.2. Moreover, the inlet condition at any time 𝑡 is impose, as well as the initial values

for time and space steps discretization.

Starting with the imposed Courant number (𝐶 =
𝑎∙Δ𝑡

Δ𝑥
=

1∙1.5∙10−2

2∙10−2 = 0.75) the problem will be solved

using three of the studied time discretization schemes, Crank-Nicholson, Lax-Wendroff (both with

consistent and diagonal mass matrix) and third-order Taylor-Galerkin. From the obtained results and

conclusions, some modifications are going to be introduced playing with the Courant number value, in

all of them in order to understand their behaviour.

MATLAB CODE NOTES

Before starting with the different cases, some remarks about the Matlab code are introduced.

1. Consistent vs. Diagonal Mass matrix. To different ways to define de mass matrix for an element

are defined in the code in order to satisfy the different cases.

2. In order to implement the methods, the following matrices are defined for each element

Mass matrix → Me = Me + w_ig*(N_ig'*N_ig)

Convective matrix → Ce = Ce + w_ig*(N_ig'*Nx_ig)

Stiffnes matrix → Ke = Ke + w_ig*(Nx_ig'*Nx_ig)

3. The variables A and B represent l.h.s. and r.h.s of the equation respectively

1) Crank-Nicholson scheme (consistent and diagonal) in time and Galerkin scheme in space

To begin, the Crank-Nicholson scheme is implemented, being the only one of the 𝜃-methods

with second order accuracy. Starting from the general formulation of 𝜃-methods, with 𝜃 =

1
2⁄ , taking into account that non-source term 𝑠 is involved and introducing the weighted

residual method for space discretization, the method can be written as

(𝑤,
∆𝑢

∆𝑡
) + (𝑤,

1

2
(𝑎 ∙ ∇)∆𝑢) = −(𝑤, 𝑎 ∙ ∇𝑢𝑛)

Me = Me + w_ig*(N_ig'*N_ig);

Figure 1. Consistent M matrix code

Me = Me + w_ig*(N_ig'*N_ig);

Me1 = sum(Me,2);
Me = [Me1(1,1) 0; 0 Me1(2,1)];

 Figure 2. Diagonal M matrix code

Substituting in the equation the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the method is

implemented and solved in Matlab.

Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎

The first calculations are made following the data of the problem. Then, the time step size is

modified in order to decrease heavily the Courant number for future comparations.

𝐶𝑎𝑠𝑒 1 → Δ𝑥 = 2 ∙ 10−2 − Δ𝑡 = 1.5 ∙ 10−2

𝐶𝑎𝑠𝑒 2 → Δ𝑥 = 2 ∙ 10−2 − Δ𝑡 = 4 ∙ 10−3

Both from consistent and diagonal cases, oscillations appear for any Courant number. This is

due to the fact that for this kind of problem (steep from), Galerkin formulation introduce

oscillations over the domain that remains at the front.

% Crank-Nicolson + Galerkin
A = M + 1/2*a*dt*C;
B = -a*dt*C;
methodName = 'CN';

Figure 3. Crank-Nicholson + Galerkin Matlab code

Figure 4. Consistent M matrix – C = 0.75 Figure 5. Consistent M matrix – C = 0.2

Figure 6. Diagonal M matrix – C = 0.75 Figure 7. Diagonal M matrix – C = 0.2

However, different behaviours for consistent and diagonal mass matrix can be observed as

Courant number is changed. As the results for consistent CN turn better as Courant number

decreases, the opposite occurs when the diagonal M matrix is computed. The consistent mass

matrix reduces the stability range to 𝐶2 ≤ 1/3, whereas the diagonal matrix presents a range of

𝐶 ≤ 1, achieving better results as 𝐶 > 0.5.

2) Lax-Wendroff method (consistent and diagonal) in time and Galerkin scheme in space.

Obtained from Taylor expansion, this explicit second-order accuracy method is implemented.

Taking into account that non-source term 𝑠 is involved and introducing the weighted residual

method for space discretization, the method can be written as

(𝑤,
∆𝑢

∆𝑡
) = −(𝑤, 𝑎 ∙ ∇𝑢𝑛) + (𝑤,

∆𝑡

2
(𝑎 ∙ ∇)2𝑢𝑛)

After integrating by parts, substituting by the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the

method is implemented and solved in Matlab.

Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎

Two now calculations are made using the same values as in the previous method for space

and time discretization.

 % Lax-Wendroff + Galerkin
 A = M;
 B = -a*dt*C - dt^2/2*a^2*K;
 methodName = 'LW';

Figure 8. Lax-Wendroff + Galerkin Matlab code

Figure 9. Consistent M matrix – C = 0.75 Figure 10. Consistent M matrix C = 0.2

As it was expected the solution obtained for the consistent LW case with Courant number of

0.75 is completely unstable. The stability parameter for this method is established as 𝐶2 ≤ 1/3,

much smaller than the actual value of the problem. Two different changes can be introducing

in order to obtain better results, the diagonal M matrix or changing the time step size.

Decreasing the C number (𝐶 = 0.2) until it meets the stability condition it is obtained such a

better result but taking into account the increment of computational cost as the time step gets

smaller.

On the other hand, as it is known that the stability range once the diagonal M matrix is

introduced turns to 𝐶 ≤ 1 with better results for 𝐶 > 0.5. Solving with the new M matrix the

problem again (𝐶 = 0.75) it changes completely the scene too, achieving stable and accurate

results. Remark the fact that, if 𝐶 = 0.2 < 0.5 is computed for the diagonal case, the results

turn worse, following the expected behaviour.

3) Third order Taylor – Galerkin method

Second-order time schemes don’t allow the needed accuracy, thus higher-order schemes are

developed to allow a better account of the propagation of information along the characteristics.

The explicit 3
rd

-order Taylor-Galerkin method is obtained from the Taylor expansion up to the

third order. Taking into account that non-source term 𝑠 is involved and introducing the

weighted residual method for space discretization, the method can be written as

(𝑤, [1 −
∆𝑡2

6
(𝑎 ∙ ∇)2]

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
) = −(𝑤, (𝑎 ∙ ∇)𝑢𝑛) + (𝑤,

∆𝑡

2
(𝑎 ∙ ∇)2𝑢𝑛)

After integrating by parts and substituting by the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the

method is implemented and solved in Matlab.

Figure 11. Diagonal M matrix – C = 0.75 Figure 12. Diagonal M matrix – C = 0.2

 %Taylor-Garlekin 3rd order
 A = M + dt^2/6*a^2*K;
 B = -a*dt*C - dt^2/2*a^2*K;
 methodName = 'TG3';

Figure 13. TG3 Matlab code

Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎

The method is implemented twice using the same values as in the previous methods for space

and time discretization.

Once again, some oscillations along the domain characterized the implemented Galerkin

formulation, however the best behaviour of the method is proved if the results are compared

with the corresponding ones of TG2 and CN.

Highlighting that the stability range for TG3 is 𝐶2 ≤ 1, it is observed that the method show

better results for a higher Courant number in contrast to the previous two methods with

consistent M matrix.

Figure 14. TG3 – C = 0.75 Figure 15. TG3 – C = 0.2

Burger’s Equation

!𝑢# + 𝑢𝑢% = 0											𝑥 ∈ (0,4), 𝑡 ∈ [0,4]
𝑢(𝑥, 0) = 𝑢2(𝑥)																										𝑎𝑡	𝑡 = 0

Initial condition: 𝑢2 4
56%
7
						𝑖𝑓	𝑥 < 3

0											𝑖𝑓	𝑥 ≥ 3

Spatial and time steps sizes: ∆𝑥 = 0.02				∆𝑡 = 0.005

Burger’s equation is one of the classical examples of non-linear hyperbolic equations for which the
convective velocity is the solution 𝑢 itself. To work with this kind of equations, the concept of “weak
solutions” that admit discontinuities should be taking into account, together with jump and entropy
conditions. Applying all these concepts, the physical correct weak solution for Burger’s equation
corresponds with Burger’s equation for the inviscid case

𝑢#∈ + 𝑢∈𝑢#∈ =	∈ 𝑢%%∈

For this case, the initial data decreases from left to right side

Different methods are going to be used in Matlab in order to solve the problem. The explicit
method and the implicit Picard method are already written, whereas the implicit Newton-Raphson
is going to be implemented. Then, solutions will be compared and discussed, obtaining the final
conclusions.

1. Implicit Newton – Raphson method. Matlab implementation

For the three method, the problem matrices of mass M, convection C and stiffness K are
equally defined. The main differences appear when the iteration process for time discretization
is introduced. Taking as start point the FEM discretization of the problem and after some
algebra, the solution of a non-linear system of equations applying the N-R method can be briefly
described.
Being 𝑓 the system linear of equations

Figura 1. Initial condition graphic

𝑓(𝑈) = (𝑀 + ∆𝑡𝐶(𝑈) + Δ𝑡𝐸𝐾)𝑈 −𝑀𝑈H

solve at each time step 𝑓(𝑈HI5) = 0. For being able to do it, at each time step the initial data
is going to be defined from the previous one, so that

𝑈HI5 = 𝑈H2
Then, at each time step, the solution is going to be computed using an iterative process (k) until
the convergence criterium fixed by the user is satisfied. Here, the main differences with respect
to Picard method appears, being the N-R final result computed as

𝑈HI5JI5 = 𝑈HI5 − 𝐽L 𝑈HI5J M𝑓L 𝑈HI5J MJ

The main remarkable fact is the apparition of the Jacobian, defined as the derivative of 𝑓 with
respect 𝑈, that must be implemented inside the iterative process to take part in the final solution
equations.

𝐽 =
𝑑𝑓
𝑑𝑈

= 𝑀 + 2∆𝑡𝐶(𝑈) + ∆𝑡𝐸𝐾

Newton-Raphson Matlab code

Taking as basis the Picard method, a new function (“burgers_imNR.m”) is created to introduce
the N-R method. Moreover, a small modification is made in the C matrix function, to create a

vector “u_k” in which the 𝑈HI5J values will be saved at each iterative k step.

function [C,u_k] = ComputeConvectionMatrix(X,T,Un)

. . .

C = spalloc(npt,npt,3*npt);
u_k = zeros(numel+1,1);
for ielem = 1:numel
 Te = T(ielem,:);
 Xe = X(Te,:);
 u_e = Un(Te);

 Ce = zeros(nen);
 for ig=1:ngaus
 N_ig = N(ig,:);
 Nxi_ig = Nxi(ig,:);
 %Jacobia
 J = Nxi_ig*Xe;
 % Derivadas de las funciones de forma
respecto a (x,y)
 Nx_ig = J\Nxi_ig;
 % diferencial de volum
 dvolu = wgp(ig)*det(J);
 u_ig = N_ig*u_e;
 Ce = Ce + N_ig'*(u_ig*Nx_ig)*dvolu;
 end
 C(Te,Te) = C(Te,Te) + Ce;
 u_k(ielem,1) = u_e(1,1);
 if ielem == numel
 u_k(ielem+1,1) = u_e(2,1);
 end

Figura 2. Code modifications at C matrix function

2. Results and conclusions

Once the three methods are implemented, the problem is solve applying the mentioned
variables and discretization values. Them, different values of time discretization and 𝐸 are going
to be implement comparing and discussing the results.

∆𝒕 = 𝟎. 𝟎𝟎𝟓 and 𝑬 = 𝟎. 𝟎𝟏

function U = burgers_imNR(X,T,At,nTimeSteps,u0,uxa,uxb,E)

. . .

for n = 1:nTimeSteps
 %fprintf('\nTime step %d\n', n);
 bccd = [uxa; uxb];
 U0 = U(:,n);
 error_U = 1; k = 0;
 while (error_U > 0.5e-5) && k < 20
 [C,u_k] = computeConvectionMatrix(X,T,U0);
 A = M + At*C + At*E*K;
 f = A*u_k - M*U(:,n);
 J = M + 2*At*C + At*E*K;
 Z = J\f;
 sol = u_k - Z;
 U1 = sol(1:m+1);
 error_U = norm(U1-U0)/norm(U1);
 %fprintf('\t Iteration %d,
error_U=%e\n',k,error_U);
 U0 = U1; k = k+1;
 end
 U(:,n+1) = U1;
end

Figura 3. N-R code main points

Figura 4. Explicit method Figura 5. PICARD implitic method

For the initial case, all the methods achieve an accurate solution. If the Pe number is computed,
being the highest value for the convective velocity 𝑎 around 1, it’s checked that 𝑃𝑒 ≤ 1, so that
the effects of convective dominant problems are not going to appear. Moreover, with a Courant
number 𝐶 ≤ 0.25 stability is guaranteed for the three methods, explicit and implicit ones.

∆𝒕 = 𝟎. 𝟎𝟎𝟓 and 𝑬 = 𝟎. 𝟎𝟎𝟎𝟏

Figura 6. N-R implicit method

Figura 7. Explicit method Figura 8. PICARD implicit method

Figura 9. N-R implicit method

A change on the viscosity value has been introduced and with such a small viscosity value,
oscillations appear. Decreasing the viscosity parameter, the Pe number tunrs to be 𝑃𝑒 ≤ 100,
turning not possible for Galarkin formulations to reproduce the solution without oscillations,
that appears around the singularity.
The solution for implicit methods is much closer to the previous one while the explicit one is
completely wrong. This shows the stronger stability conditions that the implicit methods
present, at the expence of a higher computational cost.

∆𝒕 = 𝟎. 𝟏 and 𝑬 = 𝟎. 𝟎𝟏

For this last case, recovering the initial viscosity 𝑃𝑒 ≤ 1, eliminating the problems of convective
dominant problems; and Courant number turns to 𝐶 ≤ 5 due to the time step increase. Once again
implicit method better stability conditions can be proved, with no oscillations in both cases, while
at the explicit case the solution is a completely mess.

After studying different cases, it is concluded that implicit methods offer better results for Burger’s
equation than the explicit one, but for all of the them the accuracy of the results will be conditioned
by Péclet and Courant numbers. Comparing the two implicit ones based on their number of
iterations, Picard method converge faster to the solution (taking into account the error established
by the user) than N-R method, having a lower computational cost for the same case.

Figura 10. Explicit method Figura 11. PICARD implicit method

Figura 12. N-R implicit method

