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1D Unsteady convection problem 

 

{

𝑢𝑡 + 𝑎𝑢𝑥 = 0                𝑥 ∈ (0, 1), 𝑡 ∈ (0, 0.6)

𝑢(𝑥, 0) = 𝑢0(𝑥)                                  𝑥 ∈ (0,1)

𝑢(0, 𝑡) = 1                                     𝑡 ∈ (0, 0.06]

 

𝑢0 = {
1   𝑖𝑓  𝑥 ≤ 0.2

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑎 = 1  Δ𝑥 = 2 ∙ 10−2    Δ𝑡 = 1.5 ∙ 10−2 

 

The propagation of a steep from is going to be studied under 1D problem conditions. The problem 

takes as the unit the convection speed 𝑎, and introduces a discontinuity that will be initially located 

at point 𝑥 = 0.2. Moreover, the inlet condition at any time 𝑡 is impose, as well as the initial values 

for time and space steps discretization.  

Starting with the imposed Courant number (𝐶 =
𝑎∙Δ𝑡

Δ𝑥
=

1∙1.5∙10−2

2∙10−2 = 0.75) the problem will be solved 

using three of the studied time discretization schemes, Crank-Nicholson, Lax-Wendroff (both with 

consistent and diagonal mass matrix) and third-order Taylor-Galerkin. From the obtained results and 

conclusions, some modifications are going to be introduced playing with the Courant number value, in 

all of them in order to understand their behaviour.  

 

MATLAB CODE NOTES 

Before starting with the different cases, some remarks about the Matlab code are introduced. 

1. Consistent vs. Diagonal Mass matrix. To different ways to define de mass matrix for an element 

are defined in the code in order to satisfy the different cases.  

 

 

 

 
 

 

2. In order to implement the methods, the following matrices are defined for each element 

Mass matrix →  Me = Me + w_ig*(N_ig'*N_ig) 

Convective matrix → Ce = Ce + w_ig*(N_ig'*Nx_ig) 

Stiffnes matrix → Ke = Ke + w_ig*(Nx_ig'*Nx_ig) 

 

3. The variables A and B represent l.h.s. and r.h.s of the equation respectively   

 

1) Crank-Nicholson scheme (consistent and diagonal) in time and Galerkin scheme in space 

To begin, the Crank-Nicholson scheme is implemented, being the only one of the 𝜃-methods 

with second order accuracy. Starting from the general formulation of 𝜃-methods, with 𝜃 =

1
2⁄ , taking into account that non-source term 𝑠 is involved and introducing the weighted 

residual method for space discretization, the method can be written as 

 

(𝑤,
∆𝑢

∆𝑡
) + (𝑤,

1

2
(𝑎 ∙ ∇)∆𝑢) = −(𝑤, 𝑎 ∙ ∇𝑢𝑛) 

Me = Me + w_ig*(N_ig'*N_ig); 

 
Figure 1. Consistent M matrix code 

Me = Me + w_ig*(N_ig'*N_ig); 

Me1 = sum(Me,2); 
Me = [Me1(1,1) 0; 0 Me1(2,1)]; 

 Figure 2. Diagonal M matrix code 



Substituting in the equation the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the method is 

implemented and solved in Matlab. 

 

 

 

 

 

 

Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎 

The first calculations are made following the data of the problem. Then, the time step size is 

modified in order to decrease heavily the Courant number for future comparations.  

𝐶𝑎𝑠𝑒 1 → Δ𝑥 = 2 ∙ 10−2  −   Δ𝑡 = 1.5 ∙ 10−2 

𝐶𝑎𝑠𝑒 2 → Δ𝑥 = 2 ∙ 10−2  −   Δ𝑡 = 4 ∙ 10−3 

 

 

Both from consistent and diagonal cases, oscillations appear for any Courant number. This is 

due to the fact that for this kind of problem (steep from), Galerkin formulation introduce 

oscillations over the domain that remains at the front.  

% Crank-Nicolson + Galerkin 
A = M + 1/2*a*dt*C; 
B = -a*dt*C; 
methodName = 'CN'; 

Figure 3. Crank-Nicholson + Galerkin Matlab code 

Figure 4. Consistent M matrix – C = 0.75 Figure 5. Consistent M matrix – C = 0.2 

Figure 6. Diagonal M matrix – C = 0.75 Figure 7. Diagonal M matrix – C = 0.2 



However, different behaviours for consistent and diagonal mass matrix can be observed as 

Courant number is changed. As the results for consistent CN turn better as Courant number 

decreases, the opposite occurs when the diagonal M matrix is computed.  The consistent mass 

matrix reduces the stability range to 𝐶2 ≤ 1/3, whereas the diagonal matrix presents a range of 

𝐶 ≤ 1, achieving better results as 𝐶 > 0.5. 

 

 

2) Lax-Wendroff method (consistent and diagonal) in time and Galerkin scheme in space.  
 

Obtained from Taylor expansion, this explicit second-order accuracy method is implemented. 

Taking into account that non-source term 𝑠 is involved and introducing the weighted residual 

method for space discretization, the method can be written as 

(𝑤,
∆𝑢

∆𝑡
) = −(𝑤, 𝑎 ∙ ∇𝑢𝑛) + (𝑤,

∆𝑡

2
(𝑎 ∙ ∇)2𝑢𝑛) 

After integrating by parts, substituting by the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the 

method is implemented and solved in Matlab. 

 

 

 

 

 
 

Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎 

Two now calculations are made using the same values as in the previous method for space 

and time discretization.  

 

 

 

 

 

 

 

 

  % Lax-Wendroff + Galerkin 
    A = M; 
    B = -a*dt*C - dt^2/2*a^2*K; 
    methodName = 'LW'; 

 
Figure 8. Lax-Wendroff + Galerkin Matlab code 

Figure 9. Consistent M matrix – C = 0.75 Figure 10. Consistent M matrix C = 0.2 



 

As it was expected the solution obtained for the consistent LW case with Courant number of 

0.75 is completely unstable. The stability parameter for this method is established as 𝐶2 ≤ 1/3, 

much smaller than the actual value of the problem. Two different changes can be introducing 

in order to obtain better results, the diagonal M matrix or changing the time step size.  

Decreasing the C number (𝐶 = 0.2) until it meets the stability condition it is obtained such a 

better result but taking into account the increment of computational cost as the time step gets 

smaller.  

On the other hand, as it is known that the stability range once the diagonal M matrix is 

introduced turns to 𝐶 ≤ 1 with better results for 𝐶 > 0.5. Solving with the new M matrix the 

problem again (𝐶 = 0.75) it changes completely the scene too, achieving stable and accurate 

results. Remark the fact that, if 𝐶 = 0.2 < 0.5 is computed for the diagonal case, the results 

turn worse, following the expected behaviour.  

 

 

3) Third order Taylor – Galerkin method  
 

Second-order time schemes don’t allow the needed accuracy, thus higher-order schemes are 

developed to allow a better account of the propagation of information along the characteristics. 

The explicit 3
rd

-order Taylor-Galerkin method is obtained from the Taylor expansion up to the 

third order. Taking into account that non-source term 𝑠 is involved and introducing the 

weighted residual method for space discretization, the method can be written as 
 

(𝑤, [1 −
∆𝑡2

6
(𝑎 ∙ ∇)2]

𝑢𝑛+1 − 𝑢𝑛

∆𝑡
) = −(𝑤, (𝑎 ∙ ∇)𝑢𝑛) + (𝑤,

∆𝑡

2
(𝑎 ∙ ∇)2𝑢𝑛) 

 

After integrating by parts and substituting by the previous defined matrices, 𝑀, 𝐶 𝑎𝑛𝑑 𝐾, the 

method is implemented and solved in Matlab. 

 

 

 

 

 

 

 

 

Figure 11. Diagonal M matrix – C = 0.75 Figure 12. Diagonal M matrix – C = 0.2 

 

 %Taylor-Garlekin 3rd order 
  A = M + dt^2/6*a^2*K; 
  B = -a*dt*C - dt^2/2*a^2*K; 
  methodName = 'TG3'; 

 
Figure 13. TG3 Matlab code 



Results for 𝑪 = 𝟎. 𝟕𝟓 & 𝑪 = 𝟎. 𝟐𝟎 

The method is implemented twice using the same values as in the previous methods for space 

and time discretization.  

 

 

Once again, some oscillations along the domain characterized the implemented Galerkin 

formulation, however the best behaviour of the method is proved if the results are compared 

with the corresponding ones of TG2 and CN.  

Highlighting that the stability range for TG3 is 𝐶2 ≤ 1, it is observed that the method show 

better results for a higher Courant number in contrast to the previous two methods with 

consistent M matrix.  

 
 

 

Figure 14. TG3 – C = 0.75 Figure 15. TG3 – C = 0.2 



Burger’s Equation  
 

!𝑢# + 𝑢𝑢% = 0											𝑥 ∈ (0,4), 𝑡 ∈ [0,4]
𝑢(𝑥, 0) = 𝑢2(𝑥)																										𝑎𝑡	𝑡 = 0 

 

Initial condition: 𝑢2 4
56%
7
						𝑖𝑓	𝑥 < 3

0											𝑖𝑓	𝑥 ≥ 3
 

 
Spatial and time steps sizes:   ∆𝑥 = 0.02				∆𝑡 = 0.005 

 
Burger’s equation is one of the classical examples of non-linear hyperbolic equations for which the 
convective velocity is the solution 𝑢 itself. To work with this kind of equations, the concept of “weak 
solutions” that admit discontinuities should be taking into account, together with jump and entropy 
conditions. Applying all these concepts, the physical correct weak solution for Burger’s equation 
corresponds with Burger’s equation for the inviscid case 
 

𝑢#∈ + 𝑢∈𝑢#∈ =	∈ 𝑢%%∈  
 

For this case, the initial data decreases from left to right side 

Different methods are going to be used in Matlab in order to solve the problem. The explicit 
method and the implicit Picard method are already written, whereas the implicit Newton-Raphson 
is going to be implemented. Then, solutions will be compared and discussed, obtaining the final 
conclusions.  
 
 
1. Implicit Newton – Raphson method. Matlab implementation 

 
For the three method, the problem matrices of mass M, convection C and stiffness K are 
equally defined. The main differences appear when the iteration process for time discretization 
is introduced. Taking as start point the FEM discretization of the problem and after some 
algebra, the solution of a non-linear system of equations applying the N-R method can be briefly 
described.  
Being 𝑓 the system linear of equations 

 

Figura 1. Initial condition graphic 



𝑓(𝑈) = (𝑀 + ∆𝑡𝐶(𝑈) + Δ𝑡𝐸𝐾)𝑈 −𝑀𝑈H 
 

solve at each time step 𝑓(𝑈HI5) = 0. For being able to do it, at each time step the initial data 
is going to be defined from the previous one, so that 
 

𝑈HI5 = 𝑈H2  
Then, at each time step, the solution is going to be computed using an iterative process (k) until 
the convergence criterium fixed by the user is satisfied. Here, the main differences with respect 
to Picard method appears, being the N-R final result computed as  
 

𝑈HI5JI5 = 𝑈HI5 − 𝐽L 𝑈HI5J M𝑓L 𝑈HI5J MJ  
 
The main remarkable fact is the apparition of the Jacobian, defined as the derivative of 𝑓 with 
respect 𝑈, that must be implemented inside the iterative process to take part in the final solution 
equations.  

𝐽 =
𝑑𝑓
𝑑𝑈

= 𝑀 + 2∆𝑡𝐶(𝑈) + ∆𝑡𝐸𝐾 

 
Newton-Raphson Matlab code  
 
Taking as basis the Picard method, a new function (“burgers_imNR.m”) is created to introduce 
the N-R method. Moreover, a small modification is made in the C matrix function, to create a 

vector “u_k” in which the 𝑈HI5J  values will be saved at each iterative k step.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

function [C,u_k] = ComputeConvectionMatrix(X,T,Un) 
 
. . . 
 
C = spalloc(npt,npt,3*npt);  
u_k = zeros(numel+1,1); 
for ielem = 1:numel 
    Te = T(ielem,:);  
    Xe = X(Te,:);  
    u_e = Un(Te); 
     
    Ce = zeros(nen); 
    for ig=1:ngaus 
        N_ig   = N(ig,:); 
        Nxi_ig = Nxi(ig,:); 
        %Jacobia  
        J = Nxi_ig*Xe;  
        % Derivadas de las funciones de forma 
respecto a (x,y) 
        Nx_ig = J\Nxi_ig;  
        % diferencial de volum 
        dvolu = wgp(ig)*det(J); 
        u_ig = N_ig*u_e;  
        Ce = Ce + N_ig'*(u_ig*Nx_ig)*dvolu;  
    end 
    C(Te,Te) = C(Te,Te) + Ce; 
    u_k(ielem,1) = u_e(1,1); 
    if ielem == numel 
        u_k(ielem+1,1) = u_e(2,1); 
    end 
     

Figura 2. Code modifications at C matrix function 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Results and conclusions  

 
Once the three methods are implemented, the problem is solve applying the mentioned 
variables and discretization values. Them, different values of time discretization and 𝐸 are going 
to be implement comparing and discussing the results.  
 
∆𝒕 = 𝟎. 𝟎𝟎𝟓 and 𝑬 = 𝟎. 𝟎𝟏 

 
 
 

 

function U = burgers_imNR(X,T,At,nTimeSteps,u0,uxa,uxb,E) 
 
. . . 
 
for n = 1:nTimeSteps 
    %fprintf('\nTime step %d\n', n);  
    bccd = [uxa; uxb];  
    U0 = U(:,n);  
    error_U = 1; k = 0;  
    while (error_U > 0.5e-5) && k < 20 
        [C,u_k] = computeConvectionMatrix(X,T,U0);  
        A = M + At*C + At*E*K;  
        f = A*u_k - M*U(:,n);  
        J = M + 2*At*C + At*E*K; 
        Z = J\f; 
        sol = u_k - Z;  
        U1 = sol(1:m+1);  
        error_U = norm(U1-U0)/norm(U1);  
        %fprintf('\t Iteration %d, 
error_U=%e\n',k,error_U);  
        U0 = U1; k = k+1;  
    end 
    U(:,n+1) = U1;   
end 
 

Figura 3. N-R code main points  

Figura 4. Explicit method Figura 5. PICARD implitic method 



 
 
 
 
 
 
 
 
 
 
 

 
For the initial case, all the methods achieve an accurate solution. If the Pe number is computed, 
being the highest value for the convective velocity 𝑎 around 1, it’s checked that 𝑃𝑒 ≤ 1, so that 
the effects of convective dominant problems are not going to appear. Moreover, with a Courant 
number 𝐶 ≤ 0.25 stability is guaranteed for the three methods, explicit and implicit ones.  
 
∆𝒕 = 𝟎. 𝟎𝟎𝟓  and  𝑬 = 𝟎. 𝟎𝟎𝟎𝟏 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 6. N-R implicit method 

Figura 7. Explicit method Figura 8. PICARD implicit method 

Figura 9. N-R implicit method 



A change on the viscosity value has been introduced and with such a small viscosity value, 
oscillations appear. Decreasing the viscosity parameter, the Pe number tunrs to be 𝑃𝑒 ≤ 100, 
turning not possible for Galarkin formulations to reproduce the solution without oscillations, 
that appears around the singularity.  
The solution for implicit methods is much closer to the previous one while the explicit one is 
completely wrong. This shows the stronger stability conditions that the implicit methods 
present, at the expence of a higher computational cost.  

 
∆𝒕 = 𝟎. 𝟏  and  𝑬 = 𝟎. 𝟎𝟏 

 
 

 
 
 

 
 

 
 
 
 
 
 
For this last case, recovering the initial viscosity 𝑃𝑒 ≤ 1, eliminating the problems of convective 
dominant problems; and Courant number turns to 𝐶 ≤ 5 due to the time step increase. Once again 
implicit method better stability conditions can be proved, with no oscillations in both cases, while 
at the explicit case the solution is a completely mess. 
 
After studying different cases, it is concluded that implicit methods offer better results for Burger’s 
equation than the explicit one, but for all of the them the accuracy of the results will be conditioned 
by Péclet and Courant numbers. Comparing the two implicit ones based on their number of 
iterations, Picard method converge faster to the solution (taking into account the error established 
by the user) than N-R method, having a lower computational cost for the same case.  
 

Figura 10. Explicit method Figura 11. PICARD implicit method 

Figura 12. N-R implicit method 


