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1. Introduction 

The equation we want to solve to solve is: 

 

with u0 = 0 and u1 = 1. Using Galerkin method, we will solve it for the following 

cases: 

1) a = 1,   ν = 0.2,   10 elements. 

2) a = 20, ν = 0.2,   10 elements. 

3) a = 1,   ν = 0.01, 10 elements. (This case will be also solved with SU, 

SUPG and GLS methods.) 

4) a = 1,   ν = 0.01, 50 elements. 

This will be done using both linear and quadratic elements and for two different 

functions for the source term. (s = 0  and  s = 10·e-5x – 4·e-x) 

 

2. Code modifications 

In order to follow the instructions of the report, presented in the introduction, some 

modifications where made to the provided code, and some new functions where 

implemented. In the following pages these modifications are shown and 

highlighted in yellow. 

main.m (only the modifications) 

 

... 

% Discretization 
disp(' ') 
nElem = cinput('Number of elements',10);   
if p == 1 
    nPt = nElem + 1; 
    h = (dom(2) - dom(1))/nElem; 
    X = (dom(1):h:dom(2))'; 
    T = [1:nPt-1; 2:nPt]'; 
elseif p == 2 % An extra point is added to the center of the elements 
    nPt = 2*nElem + 1; 
    h = (dom(2) - dom(1))/nElem; 
    X = (dom(1):0.5*h:dom(2))'; 
    T = [1:nPt-2; 2:nPt-1; 3:nPt]';  
end 

... 

 



SUPG_system.m (modifications with respect to SU_system.m are highlighted) 

 

 

 

 

function [K,f] = SUPG_system(X,T,referenceElement,example) 
% [K,f] = SU_system(X,T,referenceElement,example) 
% System obtained by discretizing the weak form associated to 
% the convection-diffusion equation 
%               a ux - nu uxx = f 
% with gthe stabilized SUPG method. 
% Boundary conditions are not considered.  

  
% reference element information 
nen = referenceElement.nen;  
ngaus = referenceElement.ngaus;  
wgp = referenceElement.GaussWeigths;  
N = referenceElement.N;  
Nxi = referenceElement.Nxi;  
N2xi = referenceElement.N2xi;  
% example properties 
a = example.a;  
nu = example.nu;  
tau = example.tau;  

  
% Number of nodes and elements 
nPt = length(X);  
nElem = size(T,1);  

  
K = zeros(nPt,nPt); 
f = zeros(nPt,1); 

  
% Loop on elements 
for ielem = 1:nElem 
    Te = T(ielem,:);  
    Xe = X(Te);  
    h = Xe(end) - Xe(1); 

     
    Ke = zeros(nen);  
    fe = zeros(nen,1);  
    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)*2/h; 
        w_ig = wgp(ig)*h/2;         
         Ke = Ke + w_ig*(N_ig'*a*Nx_ig + Nx_ig'*nu*Nx_ig) ... 
             + w_ig*(a*Nx_ig)'*tau*(a*Nx_ig-nu*N2x_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);          
        fe = fe + w_ig*(N_ig)'*s + w_ig*(a*Nx_ig)'*tau*s; 
    end 
    % Assmebly 
    K(Te,Te) = K(Te,Te) + Ke;  
    f(Te) = f(Te) + fe;      
end 

 

 



GLS_system.m (modifications with respect to SU_system.m are highlighted) 

 

 

 

function [K,f] = GLS_system(X,T,referenceElement,example) 
% [K,f] = SU_system(X,T,referenceElement,example) 
% System obtained by discretizing the weak form associated to 
% the convection-diffusion equation 
%               a ux - nu uxx = f 
% with gthe stabilized SU method. 
% Boundary conditions are not considered.  

  
% reference element information 
nen = referenceElement.nen;  
ngaus = referenceElement.ngaus;  
wgp = referenceElement.GaussWeigths;  
N = referenceElement.N;  
Nxi = referenceElement.Nxi;  
N2xi = referenceElement.N2xi; 

  
% example properties 
a = example.a;  
nu = example.nu;  
tau = example.tau;  

  
% Number of nodes and elements 
nPt = length(X);  
nElem = size(T,1);  

  
K = zeros(nPt,nPt); 
f = zeros(nPt,1); 

  
% Loop on elements 
for ielem = 1:nElem 
    Te = T(ielem,:);  
    Xe = X(Te);  
    h = Xe(end) - Xe(1); 

     
    Ke = zeros(nen);  
    fe = zeros(nen,1);  
    % Loop on Gauss points 
    for ig = 1:ngaus 
        N_ig = N(ig,:); 
        Nx_ig = Nxi(ig,:)*2/h; 
        N2x_ig = N2xi(ig,:)*(2/h)*2/h; 
        w_ig = wgp(ig)*h/2;         
         Ke = Ke + w_ig*(N_ig'*a*Nx_ig + Nx_ig'*nu*Nx_ig) ... 
             + w_ig*(a*Nx_ig-nu*N2x_ig)'*tau*(a*Nx_ig-nu*N2x_ig); 
        x = N_ig*Xe; % x-coordinate of the gauss point 
        s = SourceTerm(x,example);          
        fe = fe + w_ig*(N_ig)'*s + w_ig*(a*Nx_ig-nu*N2x_ig)'*tau*s; 
    end 
    % Assmebly 
    K(Te,Te) = K(Te,Te) + Ke;  
    f(Te) = f(Te) + fe;      
end 

 

 

 



SourceTerm.m 

 

 

ExactSol.m (explanation of how the new exact solution is obtained in Annex) 

 

 

 

 

function res = SourceTerm(x,example) 
% res = SourceTerm(x,problem) 
% Source term for the convection-diffusion equation 

  
problem = example.problem;  
if problem == 1 
    %res = 0; 
    res = 10*exp(-5*x) - 4*exp(-x); 
elseif problem == 2 
    res = 1;  
elseif problem == 3 
    res = sin(pi*x); 
end 

 

 

 

function res = ExactSol(x,example) 
%   
% res = ExactSol(x,example) 
% Analytical solution of a 1D convection-diffusion problem 
% with essential boundary conditions on both ends. 

  
a = example.a;  
nu = example.nu;  
problem = example.problem;  

  
if problem == 1 
    %res = (1-exp(x*a/nu))/(1-exp(a/nu)); 
    alpha = -2/(a+5*nu); 
    beta = 4/(a+nu); 
    M = [1 1; 1 exp(a/nu)]; 
    F = [-alpha-beta;1-alpha*exp(-5)-beta*exp(-1)]; 
    V = M\F; 
    A = V(1); 
    B = V(2); 
    res = A + B*exp(a*x/nu) + alpha*exp(-5*x) + beta*exp(-x); 
elseif problem == 2 
    res = (x + (1 - exp(a/nu*x))/((exp(a/nu)-1)))/a; 
elseif problem == 3 
    aux = pi*(a^2+nu^2*pi^2); 
    e = exp(a/nu); 
    c1 = (-aux+a*(e+1))/(aux*(e-1)); 
    c2 = (aux-2*a)/(aux*(e-1)); 
    res = c1 + c2*exp(a*x/nu) + nu*pi*(sin(pi*x)-

a*cos(pi*x)/(nu*pi))/aux; 
end 

 

 

 

 



3. Results 

 

Figure 1. Results for the Galerkin method with linear elements and s = 0, for case 1 (top left), 

case 2 (top right), case 3 (bottom left) and case 4 (bottom right). This order holds for figures 

3, 5 and 7. 

 

 

 

It is observed that for cases 2 and 3 the Galerkin method is not stable although it 

shows great accuracy for case 1. 

 



 

 

Figure 2. Results of case 3 for the SU, SUPG and GLS methods with linear elements and 

s=0. 

 

 

 

It is observed that for these three methods, the result for case 3 is stable. Note 

that the results for the three methods are the same. This is because using linear 

elements, the terms that make the three methods different do not act. 

 

 

 

 

 



 

Figure 3. Results for the Galerkin method with linear elements and s = 10·e-5x – 4·e-x, for 

cases 1 to 4. 

 

 

With the non-zero source term, similar results are obtained: the Galerkin method 

results for cases 2 and 3 are not stable although it shows great accuracy for the 

case 1. 

 

 

 

 

 

 

 

 



 

 

Figure 4. Results of case 3 for the SU, SUPG and GLS methods with linear elements and 

s=10·e-5x – 4·e-x. 

 

 

For the non-zero source term, the method is stable for these three methods, but 

the precision is lost for the SU method. 

 

 

 

 

 

 



 

Figure 5. Results for the Galerkin method with quadratic elements and s = 0, for cases 1 to 4. 

 

 

The same results of figures 1 and 3 are observed, but now, for quadratic 

elements, the Galerkin method does not show great accuracy for case 1. 

 

 

 

 

 

 

 

 

 



 

 

Figure 6. Results of case 3 for the SU, SUPG and GLS methods with quadratic elements and 

s=0. 

 

 

Now, the results of the three methods differ slightly, and, in comparison with the 

results in figure 2, the accuracy has decreased. 

 

 

 

 

 

 

 

 

 



 

Figure 7. Results for the Galerkin method with quadratic elements and s = 10·e-5x – 4·e-x, 

for cases 1 to 4. 

 

 

The results in this case are the same as in Figure 5. 

 

 

 

 

 

 

 



 

 

Figure 8. Results of case 3 for the SU, SUPG and GLS methods with quadratic elements and 

s = 10·e-5x – 4·e-x. 

 

The results in this case are the same as in figure 4, but here the results for 

SUPG and GLS methods are slightly worse. 

 

 

 

 

 

 

 

 

 

 

 



 

Annex 

 

To solve the ODE: 

- 𝜈 · uxx  +  a · ux =  10 · e-5x - 4 · e-x

u(0) = 0;  u(1) = 1
 

We first solve the homogeneous equation, using the characteristic polynomial: 

- 𝜈 · y2  +  a · y = 0 →  y = 0;  y =  a/𝜈 →  uh =  A + B · ex·a/𝜈 

Then, we find a particular solution, in this case of the form: 

up =  𝛼 · e-5x + 𝛽 · e-x 

Obtaining coefficients: 

𝛼 =
-2

a + 5𝜈
;   𝛽 =

4

a + 𝜈
 

 

Finally, we impose the boundary conditions to the full solution (u =  uh + up) in 

order to find the values of 𝐴 and 𝐵 in the homogeneous solution. This is done by 

solving a linear system of equations. 


