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1 Steady transport solution methods
The steady convective-diffusive transport without reaction and with Dirichlet bound-

ary conditions is defined by the following equation:

R(u) = a · ∇u−∇ · (ν∇u)− s = 0 in Ω (1.1)

u = uD in ΓD (1.2)
where u is the transported unknown property, a is the convection velocity, ν is the
diffusivity coefficient, s is the source term, Ω is the domain and uD represents the
prescribed values on the boundary ΓD.

1.1 Weak form
In order to discretize the domain we first attribute a weak form to the problem by

multiplying the equation 1.2 by an arbitrary weighting function w which is zero on ΓD.
Yielding, after an integration over the domain:∫

Ω

w(a · ∇u)dΩ−
∫
Ω

w∇ · (ν∇u)dΩ =

∫
Ω

wsdΩ (1.3)

Integrating the second term on the l.h.s by parts yields the weak form of the given
problem: ∫

Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ =

∫
Ω

wsdΩ (1.4)

1.2 Discretization
To solve equation 1.4 numerically, the unknown u is approximated by a piece-wise

polynomial expression and the domain is discretized, as shown on equation 1.5

u ≈
n+1∑
i=1

Niui x =
n+1∑
i=1

xiNi(ξ) (1.5)

where n is the number of elements in the discretization, ui is a constant value of the
unknown at the node i (and, thus, not affected by the derivatives in equation 1.4) and
N is the shape function that must have value one on node i and zero on all other nodes.
The Galerkin formulation imposes also that the weighting function is given by the shape
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function w = Ni. The latter can have different forms, being the two simplest, lineal
and quadratic. Considering a 1-D domain, they are given by equations 1.6 and 1.7,
respectively.

N1 =
1

2
(1− ξ) N2 =

1

2
(1 + ξ) (1.6)

N1 =
1

2
ξ(ξ − 1) N2 = 1− ξ2 N3 =

1

2
ξ(ξ + 1) (1.7)

Equations 1.6 and 1.7 are given in the isoparametric form for generalization (with
ξ ∈ [−1, 1]), where an “reference element” with local coordinates is used and then
mapped to the global coordinates by change of variables.

The previous approximation and discretization allows the description of the problem
as the linear system presented in equation 1.8:

(C +K)u = f (1.8)
where C, K and f are given by equations 1.9, 1.10 and 1.11.

Cij =

∫
Ω

Ni(a · ∇Nj)dΩ (1.9)

Kij =

∫
Ω

∇Ni · (ν∇Nj)dΩ (1.10)

fi =

∫
Ω

NisdΩ (1.11)

On the linear case the shape functions provide the following change of variables:

x =
x2 − x1

2
ξ +

x1 + x2

2
(1.12)

Thus, the jacobian for the mapping of the reference element with the properties ∇x =
J−1∇ξ and dx = |J |dξ is given by

J =
∂x

∂ξ
=

x2 − x1

2
(1.13)

1.3 Stability
For a regular mesh with constant element size xj − xi = h the Galerkin method sta-

bility is restricted to the Péclet number Pe = |a|h/2ν < 1, meaning that the mesh
refinement must strictly follow the relation between the convection velocity and the dif-
fusion coefficient in order to maintain stability, sometimes imposing impractically refined
grids to the solver. This limitation stimulated the creation of stabilization techniques
such as the Streamline Upwind (SU), the Streamline Upwind Petrov-Galerkin (SUPG)
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and the Galerkin Least-Squares (GLS). The first introduces an artificial diffusion with
a stabilization parameter τ = ν̄/||a||2 as following:

∫
Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +

∫
Ω

τ(a · ∇w)(a · ∇u)dΩ =

∫
Ω

wsdΩ (1.14)

For a 1-D convection-diffusion problem, the optimal stabilization parameter is given
by:

ν̄ = β
ah

2
β = coth(Pe)− 1

Pe
(1.15)

This method, though, is not consistent, leading to inaccuracy on nodal solutions when
the source term is not constant. On the other hand, the other two methods, namely
SUPG and GLS, are based on the original equation 1.2. Since R(u) is intrinsically zero,
these methods are consistent. They are given by:

∫
Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +
∑
e

∫
Ωe

P (w)τR(u)dΩ =

∫
Ω

wsdΩ (1.16)

where for SUPG:

P (w) = a · ∇w (1.17)
and for GLS:

P (w) = a · ∇w −∇ · (ν∇w) (1.18)

1.4 MATLAB implementation
Given the complete code for the Galerkin and SU formulation with linear interpo-

lation, the SUPG and GLS algorithm were incremented according to the equations in
the previous section. Four combinations of convection velocity, diffusion coefficient and
mesh sizes were tested, as presented on Table 1.1

Table 1.1: Test cases
a ν N° of Elements

Case 1 1 0.2 10
Case 2 20 0.2 10
Case 3 1 0.01 10
Case 4 1 0.01 50
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1.4.1 Linear approximation with no source term
Initially, the convective-diffusive transport was evaluated with the linear shape func-

tions stated on equation 1.6 and with a source term s = 0. The Galerkin method was
used to solve all cases yielding the results on Figure 1.1

Figure 1.1: Galerkin solution with no source term and linear shape functions

As expected, the stability limitations of the pure Galerkin method stated on the
previous section are evident on cases 2 and 3, in which the Péclet number was over 1.
The effectiveness of the stabilization methods are presented on Figure 1.2, taking the
case 3 as reference.

As seen, all methods were capable to stabilize the Galerkin method and reach the
exact solution on nodal points.

1.4.2 Linear approximation with variable source term
To further investigate the capabilities of the methods, a variable source term s =

10e−5x − 4e−x is introduced.
The behaviour of the Galerkin method is presented for all cases on Figure 1.3 and the

comparisons between the other methods are shown on Figure 1.4.
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Figure 1.2: Methods comparison with no source term and linear shape functions

Figure 1.3: Galerkin solution with source term and linear shape functions

Again, the Galerkin method shows a growing oscillation for Pe > 1. However, even
though all other methods were able to stabilize the problem, the SU solution is displaced
when compared to the exact solution. This is due to its inconsistency (added diffusion
is not related to the residual), being, thus, unable to reach nodal exact values under

6



Figure 1.4: Methods comparison with source term and linear shape functions

variable source terms.
This evaluation points to the importance of the consistent formulation of SUPG and

GLS. Although the SU result is smooth, stable and “apparently correct” it is considerably
inaccurate. Provided that on most of the applications the exact solution is not known
for later comparison, one should take into account the limitations and dangers of the
SU formulation.

1.4.3 Quadratic approximation with variable source term
Finally, the quadratic shape functions were added to the initial code and tested and

tested through the same parameters. The code implementation required a different
treatment of the stabilization parameter, assigning a matrix to it in order to cover the
different approaches for the nodes on the middle and on the edges of the element as
described in [1].

The results for the Galerkin method is presented for all cases on Figure 1.5 and the
comparisons between the other methods are shown on Figure 1.6.

It stands out that, although the Galerkin method still provides unstable results for
Pe > 1, the oscillations are smaller when compared to the solutions presented on Figures
1.1 or 1.3. This happens because the quadratic method, in practice, introduces more
nodes to the calculation using the same number of elements. Therefore, the actual Péclet
number is in fact smaller (half of the one got from a linear approximation).

Once more the SU method provided a displaced solution, while SUPG and GLS be-
haved well for the case. Also worth noticing is the somewhat worst treatment of the
boundary layer at the Dirichlet boundary condition at x = 1. The sudden change of the
function couldn’t be well represented by a parabolic function as well as a linear function
with the used spatial discretization.
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Figure 1.5: Galerkin solution with source term and parabolic shape functions

Figure 1.6: Methods comparison with source term and parabolic shape functions
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