Finite Elements for Fluids - Coding

Arthur Lustman

February 19, 2019

This report for the Finite Element for Fluids class is split in two sections : the implementation
of the different part of the code and the redaction of the exercise.

1 Implementation of the code

This section describe the reasoning behind the implementation of parts of the code : the quadratic
polynomials, the source term and the completion of the SUPG and GLS methods.

1.1 Quadratic polynomials

The code works very well by itself, the only lines of code that need to be added are the one to
obtain the coordinates of the nodes X and the connectivity matrix T.

nPt = nElem*p + 1;
h = (dom(2) — dom(1))/(nPt—1);
X = (dom(1):h:dom(2)) ’;

if p=—=

T = [1:nPt—1; 2:nPt]’;
else

T = [1l:p:nPt—1; 2:p:nPt; 3:p:nPt+1]’;
end

The algorithm generates by itself the quadratic elements and the shape functions associated
because of the line of code.

referenceElement = SetRefereceElement (p);

The problem is that the algorithm doesn’t know how to plot the quadratic functions. It is used
to join the line linearly between each nodes, which is not enough here. A function plot_quad is
added to work this out. The function used the values of the solution computed sol, the Dirichlet
boundary conditions ValDir, the coordinates of the nodes X and the number of elements nElem to
plot a quadratic solution. The entire domain is split between elements and divided into further value
to plot a continuous looking solution. A quadratic polynomial is evaluated with the coordinates of
the 3 nodes of the element (using polyfit and polyval) and added to the list of coordinates x0
and yoO.

Homework 1 Arthur Lustman

function [x0,y0]=plot_quad (sol ,X,nElem, ValDir)

x0 = [];
yo = [];
for i = 1 : nElem
dom = X(2%1—1:2%14+1)";
if i=—=

prec = [ValDir(1);s0l(1:2)];
elseif i=mElem

prec = [sol(end—1:end); ValDir (2)]’;
else

prec = sol (2xi—2:2xi)’;
end

p = polyfit (dom, prec,2);
first = linspace (dom(1),dom(3),40);
second = polyval(p, first);

x0 = [x0 first (l:end—1)];
y0 = [y0 second (l:end —1)];
end

x0 = [x0 X(end)];
y0 = [y0 ValDir (2)];

The result is pictured in the following figure : a 1D convection-diffusion equation with a source
term solved using the Galerkin methods and 10 quadratic elements.

a-Vu—V-WwVu)+ou=s(x) in Q (1)
U= 1up on Of) (2)
s(z) = 10exp(—bx) — dexp(—zx) (3)

The convection-diffusion constants are ¢ = 1, v = 0.01, 0 = 0 in a domain Q = [0,1] with the
Dirichlet conditions «(0) = 0 and u(1) =1

Pe=25 O Galerkin
=====exact

0.5

-0.5 ' '
0 0.2 0.4 0.6 0.8 1

Figure 1: Galerkin’s method for quadratic elements

Homework 1 Arthur Lustman

1.2 The Source term

Implementing or modifying the source term is simply done by modifying a couple of lines in two
Matlab function files SourceTerm which is used to compute the solution and in ExactSol which is
used to plot the analytic solution.

I implemented the source term proposed in the exercise

s(x) = 10 exp(—5z) — dexp(—x)

In order to reach this source term a 4th problem is added and follows the pattern as the previous
problem

elseif problem = 5
res = 10xexp(—5xx)—4xexp(—x);

The analytic solution is then added to the other function

elseif problem = 4

aux = 5*%nu’2 + 6xaxnu + a” 2;
res = (exp(a/nu)x(—18xnu—2xa)+exp (a*xx/nu)*(5xnu”2+...

The result of the problem number 4 can be seen on the previous figure 1.

1.3 Resolution methods

Both method needs a separate Matlab file which works the same way. The only difference comes
from the computation of the elemental stiffness Ke and force vector fe.

The following work is based on the integrals developed in the slides or the book of reference.
Since the exercise is in 1D, we are working in such dimension and adapting the integrals.

The first work is performed by changing the stabilization parameter: the usage of quadratic ele-
ments demands two different stabilization parameter, for the external nodes and for the mid-side
node of the element. This is regrouped in the variable MTau which is either a scalar or a matrix of
the following form

tauc O 0
0 tau 0 (4)
0 0 tau.c

Where the values of tau and tau_c are differently computed'. This is implemented with the
following lines of code

7~

if length (N)==

tau_c = example.tau_c;

MTau = eye (3).x[tau_c; tau; tau_c];
else

MTau = tau;

end

1Jean Donea and Antonio Huerta, Finite Element Methods for Flow Problems, West Sussex: Wiley, 2003. Page
56 and 62

Homework 1 Arthur Lustman

1.3.1 Streamline Upwind Petrov-Galerkin (SUPG)
/ (w(adyu) + Opw - (VOzu) + wou) dQ2+ Z/ (a0, w)T ((adyu) — Op (VOzu) + ou)dQ (5)
Q — Ja.

:/ wsdQ) + Z/ (a0 w)Ts (6)
Q — Ja.
A few term needs to be changed, performing discretization
u(@) = 3 u,N (@) (7)
w(z) = Z wy N (x) (8)
For which the derivatives are computed
Opu(r) =Y 0, N () (9)
Orzu(x) = Z Uy O N () (10)

Which gives us the following result as lines of code
SUPG

for ig = l:ngaus

Nxx_ig = N2xi(ig,:)*(2/h)"2;

Ke = Ke + w_ig*(N_ig’«axNx_ig + Nx_ig «nuxNx_ig)
+ (w.igxsigmaxN_ig) « N_ig
+ w_igxMTaux*(axNx_ig) "*(a*Nx_ig—nuxNxx_ig+sigmaxN_ig);
fe = fe + w_ig*(N_ig) xs + w_ig*MTaux(axNx_ig) '*s;

end

1.3.2 Galerkin least-squares (GLS)

The work previously stated has to be done here too

/Q (w(adyu) + Opw - (VOzu) + wou) dQ+ Z/Q (a0w — Oy (vw) + ow)T ((a0zu) — Oz (VOyu) + ou) dS
e (1)
= /Q ws dQ + g /Qe (adyw — 0 (VO w) + ow)Ts (12)

Based on the previous changes already done to the SUPG Matlab code, only the elemental stiffness
matrix and the forcing vector are to be changed after discretization.

GLS

Ke = Ke + w_ig*(N_ig '*axNx_ig + Nx_ig 'snuxNx_ig)
+ (w.igxsigmaxN_ig) «N_ig
+ w_igxMTaux(a*xNx_ig — nuxNxx_ig + sigmaxN_ig) '«
(axNx_ig — nuxNxx_ig + sigmaxN_ig);
fe = fe + w_ig*(N_.ig)’'xs + MTauxw_ig*(axNx_ig —
nuxNxx_ig + sigmaxN_ig) xs;

Homework 1 Arthur Lustman

2 Homework

This section of the report is dedicated to compute the instructions in the slide and observe the
results based on the code already explained in the previous section.

2.1 Galerkin’s method

The problem’s statement is the first one, where the source term is equal to 0 everywhere and the
boundary conditions are 0 on the left and 1 on the right. Only linear elements are used in this

subsection.
Changing the two parameters a and v may change the shape of the solution, as is can be seen by

the difference of the exact solution in figure 2 to figure 3, 4 and 5. Figures 3, 4 and 5 display the
same exact solution because the ration a/v is the same, which is much different for the case of

figure 2.
Among figure 3, 4 and 5, it is the last one that display the best computed solution as the number

of element is increased. Thus the Peclet number is decreased which result in a non oscillating
computed solution. Though it can be seen that the computation is not exact due to the boundary

layer on the right side of the solution.

1 ‘ : : ‘ 1 ‘)
Pe = 0.25 -©-Galerkin Pe=5 -6~ Galerkin

1 exact |fx

05} F

0 D7 N A0 WY AU W— ol
-0.5¢

L L L _1 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 2: a =1, v = 0.2, 10 elements Figure 3: a = 20, v = 0.2, 10 elements

1 : : : :) 1 : : @
Pe=5 =©~-Galerkin Pe=1 =0~ Galerkin
=====exact E 0.8¢ === exact
05+ F
0.6
0G O A el 0.4+
-0.5
- ‘ ‘ ‘ ‘ . ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4: a = 1, v = 0.01, 10 elements Figure 5: a = 1, v = 0.01, 50 elements

2.2 Default parameters with different methods

The third case (a = 1, ¥ = 0.01, 10 linear elements), renamed as the default parameters, gives us
interesting results when the different solution methods are computed and compared.

Galerkin’s method is the only one offering an oscillating solution. The other methods, displayed in

Homework 1 Arthur Lustman

figures 7, 8 and 9 do the offer exact solution at the node. They are of course incapable to display
the exact solution near the right boundary layer due to the linear nature of the elements and their
small amount used on the domain.

The optimal stabilization parameter is the same for every method and is equal to 7 = 0.040005.
Since linear elements are used, it is not possible to use a corner stabilization term.

1 Q
Pe=5 =6~ Galerkin
------ exact F
0.5 :
0G (TP VU VY S RS o
-0.5
-1 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Figure 6: Galerkin’s method Figure 7: Streamline Upwind method
1 | | | : ') 1 | - | : ')
Pe=5 '9'SUPG/ Pe=5 -6-GLS l
o8t exact
0.61
0.4
0.2
oc
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 8: SUPG’s method Figure 9: Galerkin least-squares method

2.3 Changed source term

The source term is changed, it’s implementation is described in section 1.2, and doing so modify
the shape of the solution of the problem.

One again, Galerkin method doesn’t do well and oscillate in the whole domain. The previous
exact solution’s computed for the 3 other methods are not exact here. It is a result of the solution

being more complicated than before.

The SU method’s display a computed solution that is under the exact solution but still has the
same type or curvature. The SUPG and GLS solutions are the closest to the solutions but they
still show a small difference between the computation and the exact solution.

Arthur Lustman

Homework 1

1 | | | : o) 1 | - | : 1)
Pe=35 -6 Galerkin Pe=5 -e-su
0.5 Lon A, =====exact ===em@xact
i 051 ueemnene,,
oc LN' ..‘,0 . ..'..
05/ oA od i
§ ...,...
-05¢F fod |
1.5+
-2 : : : : -1 : : : :
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Figure 10: Galerkin’s method Figure 11: Streamline Upwind method
1 : : : : 7] 1 : - : :)
Pe=5 -6-SUPG Pe=5 -©-GLS
------ exact =====exact
0.5+ . 0.5¢ .
oa o ;
05 o] 05 i]
-1 : : : : -1 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 12: SUPG’s method Figure 13: Galerkin least-squares method

2.4 Quadratic elements

The previous methods for the first source term displayed exact solution at the node (except for
Galerkin) but had trouble with the right boundary layer. The Galerkin’s method has improved
for quadratic elements, as it can be seen on figure 1 for the first problem type with the default

parameters. Oscillation still appears but is located near the right boundary layer.

The solution of the other methods which were already exact at the node with linear elements
did not improved with quadratic elements due to the right boundary layer. The computation

methods would display better solutions if the number of elements is refined.

The default parameters are used for the second source term (equation 3) and the result of the
computed solution are displayed on figures 14 to 17. The oscillating behavior of Galerkin’s method
is once again uncovered here, close to the right boundary layer, but it has greatly improved from
the linear elements. All methods behaves bad close to the boundary layer but SUPG’s nodes seem
to be more precise than the other. Although really close, the solution of Galerkin, SUPG and GLS,

never have an exact solution at the nodes.

Arthur Lustman

Homework 1

Pe=25 O su

Pe=25 O Galerkin
=====exact ===*=exact] i

0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0

Figure 14: Galerkin’s method Figure 15: Streamline Upwind method

O

9 1

Pe=25 O GLS

Pe=25 O SUPG

0.5

RRLLLITTT

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 16: SUPG’s method Figure 17: Galerkin least-squares method

