
Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

Finite Elements in Fluids, Assignment 2

Jose Raul Bravo Martinez, MSc Computational Mechanics

February 18, 2019

Derivation of equations:

Starting from a steady transport equation:

a · ∇u−∇ · (ν∇u) + σu = s , inΩ (1)

with Dirichlet boundary conditions u = ud on ∂Ω.
It is necessary to multiply by a ”test” or ”weight” function and integrate over the domain, to

obtain: ∫
Ω

w(a · ∇u)dΩ−
∫

Ω

w∇ · (ν∇u)dΩ︸ ︷︷ ︸
Apply Divergence Theorem

+

∫
Ω

wσudΩ =

∫
Ω

sdΩ (2)

Recall the divergence theorem:∫
Ω

f∇ ·GdV = −
∫

Ω

∇f ·GdV +

∫
∂Ω

fG · ndS (3)

Applying (3) to the second term in (2) to get rid of the second order derivatives, one obtains
the weak form of the governing equations:∫

Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +

∫
Ω

wσudΩ =

∫
Ω

sdΩ (4)

for all w, such that w = 0 on ∂Ω.
For simplify the notation, a compact version of the weak from is introduced as:

a(w, u) =

∫
Ω

∇w · (ν∇u)dΩ, (w, s) =

∫
Ω

wsdΩ

c(w, u, a) =

∫
Ω

w(a · ∇u)dΩ, (w, h)ΓN
=

∫
ΓN

whdΓ

This allows to write the weak form 4, in the following compact expression:

a(w, u+ c(w, u,a) = (w, s) + (w, h)ΓN
(5)

Implementation of 1D linear elements. Galerkin Approximation.

In order to discretize the weak form by means of the Galerkin method, lets consider the ap-
proximation of the exact solution u as:

u(x) = uh(x) =
∑

A∈η 6ηD

NA(x)uA +
∑
A∈ηD

NA(x)uD(xA) (6)

The test functions can be discretized in a similar way, to obtain the set of equations:

(C + K)u = f (7)

Where u is the vector of unknown nodal values, C is the Convection matrix, K is the difussion
matrix. Both this matrices are defined as:

1

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

C = ΠeCe Ceab =

∫
Ω

Na(a · ∇Nb)dΩ convection matrix

K = ΠeKe Ke
ab =

∫
Ω

∇Na · ν∇Nb)dΩ diffusion matrix

Where Πe is the assembly operator.
For the case of a 1D linear element, the governing equation is simplified to:

aux − νuxx = s(x) in]0,L[(8)

u = uD at x=0 and x=L

The weak form after integration by parts is:∫ L

0

(waux + wxνux)dx =

∫ L

0

wsdx, (9)

or in compact form:

a(w, u) + c(w, u, a) = (w, s) (10)

Thus, using the definitions given before, the discrete equation for an interior node A, A=2,...,
neq + 1, where neq is the number of interior nodes of the spatial discretization:

∫ L

0

neq+1∑
B=2

(aNA
B

∂x
+ ν

∂NA
∂x

)
B

∂x
) =

∫ L

0

NAsdx (11)

The shape functions of a linear element are given by:

N1(ξ) =
1

2
(1− ξ) Nsξ

1

2
(1 + ξ), (12)

And for a uniform mesh of size h:

dx =
1

2
(x2 − x1)dξ =

h

2
dξ, (13)

and,

∂Nb
∂x

=
∂Nb
∂ξ

∂ξ

∂x
=

2

h

∂Nb
∂ξ

, forb = 1, 2. (14)

Therefore, the Convection and diffusion matrices are:

Ce = a

∫
Ωe

[
N1

∂N1

∂x N1
∂N2

∂x

N2
∂N1

∂x N2
∂N2

∂x

]
dx =

a

2

[
−1 +1
−1 +1

]
(15)

Ke = ν

∫
Ωe

[
∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x

]
dx =

ν

h

[
+1 −1
−1 +1

]
(16)

And the forcing vector is:

fe
∫

Ω

{N1s1 +N2s2, N2(N1s1 +N2s2)T dx} (17)

With these results and assembling the finite element contributions, one obtains the following
expression for an interior node j:

a

(
uj+1 − uj−1

2h

)
− ν

(
uj+1 − 2uj + uj−1

h2

)
=

1

6
(sj−1 + 4sj + sj + 1) (18)

Defining the Peclet number as:

Pe =
ah

2ν
(19)

2

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

The importance of the Peclet number can be visualized with a simple example, let us consider
equation 8 without the source term:

aux − νuxx = 0 (20)

Notice that it can be rewritten as:

(Pe− 1)ui+1 + 2ui − (Pe + 1)ui−1 = 0 (21)

and further:

(ui+1 − ui) =
Pe + 1

1− Pe
(ui − ui−1) (22)

Where it can be seen that values of Peclet number larger than 1 cause oscillations. To illustrate
this, lets use the provided MATLAB code of the course. The problem solved by the code is
aux − nuuxx = f on a 1D domain and boundary conditions u(0) = 0 and u(1) = 1, on a domain
[0,1].

Figure 1: Comparison of Galerkin method using 2 different Peclet number

As seen, in order to obtain stable solutions the Peclet number should be below 1. Sometimes
this is difficult to achieve, specially due to the fact that very small elements are to be used in the
zones or large gradients.

An alternative to the refinement, are the stabilization methods. The first one to be discussed
here is the Streamline Upwind method.

In the Streamline Upwind method (SU), the weak form is:

∫
Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +

∫
Ω

wσudΩ

∫
Ω

ν̄

||a||2
(a · ∇w)(a · ∇u)dΩ︸ ︷︷ ︸

Stabilization Term

=

∫
Ω

sdΩ (23)

Where ν̄
||a||2 is τ in the code. After running the code using SU method, the following plot is

obtained:

Figure 2: Streamline Upwind method

As can be seen from figure , exact nodal values are obtained. However, this only holds for
constant values of the source term s. If one solves a problem where the source term is a function
of space the method fails. The following figure shows exactly that.

The source term used in Figure , is 10e−5x − 4e−x

3

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

Figure 3: Streamline Upwind method

Notice that the solution not only is not exact at the nodes, but is far from being precise. This
is due to the fact that the SU method is not conservative, in the sense that something is being
added to the weak form, therefore, another problem (and not the original one) is being solved.

In order to obtain a better solution, the Streamline Upwind Petrov Galerkin (SUPG) method
is used. The weak form of SUPG is shown next:∫

Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +

∫
Ω

wσudΩ+

∑
e

∫
Ωe

(a · ∇w)τ ((a · ∇w)−∇ · (ν∇u) + σu)︸ ︷︷ ︸
Stabilization Term

=

∫
Ω

sdΩ +
∑
e

∫
Ωe

(a · ∇w)τsdΩ︸ ︷︷ ︸
Stabilization Term

(24)

The implementation of this is shown next:

Figure 4: SUPG implementation in 1D

And after running the same case in which SU method failed, the following plot is obtained:
The implementation of this is shown next:

Figure 5: SUPG method for solving the PDE with variable source term

As can be seen, SUPG is nodally exact even when the source term is a function of space. This
is because the stabilization is done on a conservative manner, using the residual.

However effective, SUPG presents a slight disadvantage by introducing a non-symmetric stabi-
lization term. Therefore, the Galerkin Least Squares method is also introduced (GLS). The weak
form of GLS is shown next:∫

Ω

w(a · ∇u)dΩ +

∫
Ω

∇w · (ν∇u)dΩ +

∫
Ω

wσudΩ+

4

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

∑
e

∫
Ωe

((a · ∇w)−∇ · (ν∇u) + σu) τ ((a · ∇w)−∇ · (ν∇u) + σu)︸ ︷︷ ︸
Stabilization Term

=

∫
Ω

sdΩ +
∑
e

∫
Ωe

((a · ∇w)−∇ · (ν∇u) + σu) τsdΩ︸ ︷︷ ︸
Stabilization Term

(25)

This method offers the advantage that its not only conservative, but also symmetric. The
implementation of this method is shown next:

Figure 6: GLS implementation in 1D

And the plot after running the code:

Figure 7: GLS method for solving the PDE with variable source term

Quadratic Elements

For quadratic elements, some remarkable changes are introduced. First, the shape functions
used are now the following:

N1(ξ) =
1

2
ξ(ξ − 1) N2(ξ) = 1− ξ2 N3(ξ) =

1

2
ξ(ξ + 1) (26)

It follows that:

∂Nb
∂x

=
∂Nb
∂ξ

∂ξ

∂x
=

1

h

∂Nb
∂ξ

, b = 1, 2, 3. (27)

Notice that h is the space from node to node, and not the length of the element.
Then, the Stiffness and Convection matrices are:

Ce = a

∫
Ωe

N1
∂N1

∂x N1
∂N2

∂x N1
∂N3

∂x

N2
∂N1

∂x N2
∂N2

∂x N1
∂N3

∂x

N3
∂N1

∂x N3
∂N2

∂x N3
∂N3

∂x

 dx =
a

2

 −1 4/3 −1/3
−4/3 0 4/3
1/3 −4/3 1

 (28)

Ke = ν

∫
Ωe

∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N1

∂x
∂N3

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x
∂N1

∂x
∂N3

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x

 dx =
ν

6h

 7 −8 1
−8 16 −8
1 −8 7

 (29)

But even more interesting is that now, not only one stabilization parameter τ is needed, but
two of them. One on the side nodes, and one in the center node (the one in the center node is the
same one used for both nodes in the linear element case).

5

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

In the case of linear SU approximation, the stabilization parameters needed are:

α = coth(Pe)− 1

Pe
; τ = α

h

2a
(30)

β = 2((coth(Pe)− 1/Pe)− (cosh(Pe))2(coth(2Pe)− 1/(2Pe)))/(2− (cosh(Pe))2);

τc = β
h

2a
(31)

Where τ is the parameter to be used on the inner node, and τc is the parameter to be used on
the corner nodes. For SUPG and GLS, the parameters are now:

α = coth(Pe)− 1

Pe
; τ = α

h

2a
(32)

β =
(2Pe− 1)e3Pe + (−6Pe + 7))ePe + (−6Pe− 7))e−Pe + (2Pe + 1))e−3Pe

(Pe + 3)e3Pe + (−7Pe)− 3)ePe + (7Pe− 3)e(−Pe − (Pe + 3)e−3Pe

τc = β
h

2a
(33)

The implementation of the quadratic elements in the code starts by changing the way the
coordinates and connectivities is generated.

Figure 8: Quadratic Grid Generation

The implementation of the methods is shown in figure 9.
Notice that the parameter τ is now a matrix with the following shape:τc 0 0

0 τ 0
0 0 τc


Where τc is the vaue of the stabilization parameter in the corners, and τ is the stabilization

parameter in the middle node.
The plots of solving the PDE with each method, using only 5 elements (Same amount of nodes

as in the linear case) is shown in figure 10.
It is possible to observe that the Galerkin method one again fluctuates, the SU method again

is giving stable results, but far from the analytical solution. SUPG is nodally exact, and GLS is
close to the analytical, but exact anymore; this might be due to the τ parameter chosen for SUPG
and GLS.

6

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

Figure 9: Quadratic Implementations

7

Jose Raul Bravo Martinez, MSc Computational Mechanics, UPC

Figure 10: Quadratic Plots

8

