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Problem statement 

1D convection-diffusion equation with constant coefficients and Dirichlet boundary 

conditions: 

𝑎𝑢𝑥 − 𝜈𝑢𝑥𝑥 = 𝑠    𝑥 𝜖 [0,1] 

𝑢(0) = 𝑢0; 𝑢(1) = 𝑢1 

There are 3 examples to go through: 

 𝑠 = 0, 𝑢0 = 0, 𝑢1 = 1 

 𝑠 = 1, 𝑢0 = 0, 𝑢1 = 0 

 𝑠 = sin (𝜋𝑥), 𝑢0 = 0, 𝑢1 = 1 

From the strong form to the weak form, these steps have been followed: 

First, the differential function is multiplied by the test function 𝑣, 𝑣 = 0 𝑜𝑛 Г𝐷. 

− ∫ 𝑣𝜈𝑢" 𝑑𝛺 + ∫ 𝑎𝑢′𝑑𝛺
𝛺

= ∫ 𝑣𝑠
𝛺𝛺

𝑑𝛺 →  − ∫ 𝑣(𝑥)
𝜈𝜕2𝑢(𝑥)

𝑑𝑥2
𝑑𝑥

1

0

+ ∫ 𝑎𝑣(𝑥)
𝜕𝑢(𝑥)

𝑑𝑥
𝑑𝑥

1

0

= ∫ 𝑣(𝑥)𝑠(𝑥) 𝑑𝑥
1

0

 

Second, by integrating by parts: 

− ∫ 𝑣(𝑥)𝜈
𝜕2𝑢(𝑥)

𝑑𝑥2
𝑑𝑥

1

0

= ∫ 𝜈
𝜕𝑣(𝑥)

𝑑𝑥

𝜕𝑢(𝑥)

𝑑𝑥

1

0

𝑑𝑥 − 𝜈
𝜕𝑢(𝑥)𝑣(𝑥)

𝑑𝑥
|

0

1

 

Rearranging terms 

∫ 𝜈
𝜕𝑣(𝑥)

𝑑𝑥

𝜕𝑢(𝑥)

𝑑𝑥

1

0

𝑑𝑥 = − ∫ 𝑎𝑣(𝑥)
𝜕𝑢(𝑥)

𝑑𝑥
𝑑𝑥

1

0

+ ∫ 𝑣(𝑥)𝑠(𝑥)𝑑𝑥
1

0

+ 𝜈
𝜕𝑢(𝑥)𝑣(𝑥)

𝑑𝑥
|

0

1

 

Imposing the approximation function and substituting into the equation 

𝑢(𝑥) ≅ 𝑢(𝑥)ℎ = ∑ 𝑁𝑖(𝑥)𝑢𝑖

𝑛

𝑖=1

 

∫ 𝜈
𝜕𝑣(𝑥)

𝑑𝑥

𝜕

𝑑𝑥
∑ 𝑁𝑖(𝑥)𝑢𝑖

𝑛

𝑖=1

1

0

𝑑𝑥

= − ∫ 𝑎𝑣(𝑥)
𝜕 ∑ 𝑁𝑖(𝑥)𝑢𝑖

𝑛
𝑖=1

𝑑𝑥
𝑑𝑥

1

0

+ ∫ 𝑣(𝑥)𝑠(𝑥)𝑑𝑥
1

0

+ 𝜈
𝜕 ∑ 𝑁𝑖(𝑥)𝑢𝑖

𝑛
𝑖=1 𝑣(𝑥)

𝑑𝑥
|

0

1

 



∑ ∫ 𝜈
𝜕𝑣𝑗(𝑥)

𝑑𝑥

𝜕𝑁𝑖(𝑥)𝑢𝑖

𝑑𝑥

1

0

𝑛

𝑖=1

= − ∫ 𝑎𝑣𝑗(𝑥)
𝜕 ∑ 𝑁𝑖(𝑥)𝑢𝑖

𝑛
𝑖=1

𝑑𝑥
𝑑𝑥

1

0

+ ∫ 𝑣𝑗(𝑥)𝑠(𝑥)𝑑𝑥
1

0

+ ∑ 𝜈
𝜕𝑁𝑖(𝑥)𝑣𝑗(𝑥)𝑢𝑖

𝑑𝑥
|

0

1𝑛

𝑖=1

 

By taking, for convenience, the assumption that 

𝑣𝑗(𝑥) = 𝑁𝑗(𝑥) 

Then, it all yelds the weak form of the given function in its strong form, where the test 

function v vanishes in Dirichlet boundary. 

∑ ∫ 𝜈
𝜕𝑁𝑗(𝑥)

𝑑𝑥

𝜕𝑁𝑖(𝑥)𝑢𝑖

𝑑𝑥
= − ∫ 𝑎𝑁𝑗(𝑥)

𝜕 ∑ 𝑁𝑖(𝑥)𝑢𝑖
𝑛
𝑖=1

𝑑𝑥
𝑑𝑥

1

0
+ ∫ 𝑁𝑗(𝑥)𝑠(𝑥)𝑑𝑥

1

0
+

1

0
𝑛
𝑖=1

∑ 𝜈
𝜕𝑁𝑖(𝑥)𝑁𝑗(𝑥)𝑢𝑖

𝑑𝑥
|
0

1
𝑛
𝑖=1        

 

Task statements, resolution and conclusions 

1. By using Galerkin’s method: 

𝑎 = 1, 𝜈 = 0.2, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝑎 = 20, 𝜈 = 0.2, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝑎 = 1, 𝜈 = 0.01, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

𝑎 = 1, 𝜈 = 0.01, 50 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 



 

As it is shown above, Galerkin method is not suitable to solve convection-dominated 

problems. Here, the dominancy is predicted by the Péclet number which expresses the 

ratio of convective to diffusive transport. 

The problem statement consists of solving a 1D boundary value problem with a constant 

source term, 𝑠 = 0, 𝑢0 = 0, 𝑢1 = 1, in a dimensionless domain L=1. With that uniform 

source, are avoided the truncation errors due to spatial discretization of the term. This 

way, truncation error that just arises from Galerkin discretization of the model problem, 

may be attributed to the representation of the convection and diffusion operators. 

The exact solution to this problem is: 

𝑦(𝑥) =
1 − 𝑒

𝑎𝑥
𝑛𝑢

1 − 𝑒
𝑎

𝑛𝑢

 

The numerical approximation to the exact solution is computed with several values of a, 

nu, and number of elements as described before. 

As the results are displayed in the figures presented above, one notes that the Galerkin 

solution loses accuracy by non-physical oscillations when the Péclet number is larger 

than 1.  

𝑃𝑒 =
𝑎ℎ

2𝜈
 

 The meaning underlies in the fact that the method lacks its best approximation property 

when non-symmetric convection operator dominates over the diffusion one in the 

transport equation. Therefore, spurious node-to-node oscillations appear. 

 

𝑎 = 1, 𝜈 = 0.2, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 

𝑎 = 20, 𝜈 = 0.2, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 

𝑎 = 1, 𝜈 = 0.01, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 

𝑎 = 1, 𝜈 = 0.01, 50 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 



The solution for not having high Péclet numbers lies in the fact that one can use finner 

meshes by reducing the element size when the convection parameter is high and 

diffusion is low. 

 

2. Case 3:  
𝑎 = 1, 𝜈 = 0.01, 10 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

Is solved for the three examples of 1st exercise by using: 

 Streamline upwind 

 SUPG 

 GLS 

With the optimal stabilisation parameter. 

All cases have linear elements 

It is now compared the first example with all solvers: 

𝑠 = 0, 𝑢0 = 0, 𝑢1 = 1 

 

𝑠 = 1, 𝑢0 = 0, 𝑢1 = 0 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

Galerkin Least-Squares 



 

𝑠 = sin(𝜋𝑥) , 𝑢0 = 0, 𝑢1 = 1 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

𝑠 = 10𝑒−5𝑥 − 4𝑒−𝑥, 𝑢0 = 0, 𝑢1 = 1 

To use the exact solution to compare with the solution of the different methods, the 

analytical solution of the partial differential equation has been obtained. 

As it is a second order PDE with non-homogeneous solution, the steps carried out are: 

The PDE has particular and homogeneous solution (𝑦𝑝, 𝑦ℎ) 

The particular solution is calculated first: 

Let a = a and b = nu; 

𝑦𝑝1
= 𝐴10𝑒−5𝑥 

𝑦𝑝1
′ = −50𝐴𝑒−5𝑥 

𝑦𝑝1
′′ = 250𝐴𝑒−5𝑥 

−250𝑏𝐴𝑒−5𝑥 − 50𝑎𝐴𝑒−5𝑥 = 10𝑒−5𝑥 

𝐴 =
10

−250𝑏 − 50𝑎
 

𝑦𝑝1
=

10

−250𝑏 − 50𝑎
10𝑒−5𝑥 =

𝑒−5𝑥

−2.5𝑏 − 0.5𝑎
 

The second particular solution: 

𝑦𝑝2
= −𝐴4𝑒−𝑥 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



𝑦𝑝2
′ = 4𝐴𝑒−𝑥 

𝑦𝑝2
′′ = −4𝐴𝑒−𝑥 

4𝑏𝐴𝑒−𝑥 + 4𝑎𝐴𝑒−𝑥 = −4𝐴𝑒−𝑥 

𝐴 = −
1

𝑏 + 𝑎
 

𝑦𝑝2
= −

1

𝑏 + 𝑎
4𝑒−𝑥 

The homogeneous solution calculated with the proper characteristic equation: 

𝑦ℎ = 𝑐1 + 𝑒
𝑎𝑥
𝑏 𝑐2 

𝑦𝐿 = 𝑦ℎ + 𝑦𝑝1
+ 𝑦𝑝2

= 𝑐1 + 𝑒
𝑎𝑥
𝑏 𝑐2 +

𝑒−5𝑥

−2.5𝑏 − 0.5𝑎
−

1

𝑏 + 𝑎
4𝑒−𝑥 

If the solution is solved for the following boundary conditions, 

𝑢0 = 0, 𝑢1 = 1 

𝑐1 = −
1

𝑒
𝑎
𝑏 − 1

[1 + 4
(1 − 𝑒−1)

𝑏 + 𝑎
+

1 − 𝑒−5

−2.5𝑏 − 0.5𝑎
] −

4

𝑏 + 𝑎
−

1

−2.5𝑏 − 0.5𝑎
 

𝑐2 = −
1

𝑒
𝑎
𝑏 − 1

[1 + 4
(1 − 𝑒−1)

𝑏 + 𝑎
+

1 − 𝑒−5

−2.5𝑏 − 0.5𝑎
] 

So, the exact analytical solution is used to check method’s accuracy. 

Therefore, if the new source is applied: 

𝑠 = 10𝑒−5𝑥 − 4𝑒−𝑥, 𝑢0 = 0, 𝑢1 = 1 

 

 



 

The SU method produces smooth solutions for high Péclet numbers. When the mesh is 

uniform for linear elements and constant coefficients, SU delivers exact solution.  

In the cases where there is a spatially variable source term (cases 3 and 4), the solution 

is not fitted for this method. 

On another hand, SUPG method performs better than the SU method when the source 

term is a spatially variable term. The definition of the stabilization parameter, tau, and 

the fact that this parameter is not symmetric also introduces difficulties in determining 

the stability of such method. 

For the cases shown above in which the linear elements are used, no difference can be 

depicted when comparing SUPG and GLS methods since second-order derivatives are 

zero in the element interiors. 

 

 

 

 

 

 

 

 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

3. Quadratic elements are implemented. 

To do so, it has implemented the way the user inputs the reference to choose linear or 

quadratic elements. 

% Reference element: numerical quadrature and shape functions 

p = cinput('Input: 1: linear element, 2: quadratic element= ', 1); 

% p = 2; 

referenceElement = SetRefereceElement(p); 

 

Moreover, the number of points for quadratic elements now are 2*nElem+1 and 

Connectivity matrix has nElem*nen(numb of nodes in an element). 

% Computational domain 

dom = [0,1]; 

example.dom = dom; 

% Discretization 

disp(' ') 

nElem = cinput('Number of elements',10); 

if p == 1 

nPt = nElem + 1; 

h = (dom(2) - dom(1))/nElem; 

X = (dom(1):h:dom(2))'; 

T = [1:nPt-1; 2:nPt]'; 

elseif p == 2 

nPt = 2*nElem +1; 

h = (dom(2) - dom(1))/(2*nElem); 

X = (dom(1):h:dom(2))'; 

T = [1:2:2*nElem-1; 2:2:2*nElem; 3:2:2*nElem+1]'; 

end 

 

The second derivative of the shape functions is also implemented: 

N2x_ig = N2xi(ig,:)*2/(h^2); 

 

In the case of SUPG method, the K element has been calculated as follows: 

Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

(tau*a*Nx_ig)'*(a*Nx_ig-nu*N2x_ig)); 

 

While for GLS method: 

Ke = Ke + w_ig*(N_ig'*(a*Nx_ig) + Nx_ig'*(nu*Nx_ig) + 

(a*Nx_ig'-N2x_ig')*tau*(a*Nx_ig)-nu*N2x_ig); 

 

 

 



 

 

The results for quadratic elements are presented below: 

𝑠 = 0, 𝑢0 = 0, 𝑢1 = 1 

 
 

𝑠 = 1, 𝑢0 = 0, 𝑢1 = 0 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

𝑠 = sin(𝜋𝑥) , 𝑢0 = 0, 𝑢1 = 1 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

𝑠 = 10𝑒−5𝑥 − 4𝑒−𝑥, 𝑢0 = 0, 𝑢1 = 1 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

 

SU with quadratic elements fits better the exact solution but it is still far from it.  

There is no minor difference between SUPG and GLS except for the addition of second 

derivatives and diffusion term in the formulation.  

If referring to comparison between linear and quadratic elements it can be seen how with 

linear elements, when source term is constant or homogeneous, the method behaves 

better than with quadratic elements. On the contrary, when the source term is spatially 

distributed (cases 3 and 4), the quadratic elements fit better the exact solution. 

 

Stream upwind method 

 

Stream upwind Petrov-Galerkin 

 

 

Galerkin Least-Squares 

 



 

 

 

Stream upwind Petrov-Galerkin linear 

elements 

 

 

 

Stream upwind Petrov-Galerkin 

quadratic elements 

 

 

Stream upwind Petrov-Galerkin linear 

elements 

 

 

 

Stream upwind Petrov-Galerkin 

quadratic elements 

 

 


