
Moritz Jokeit Homework 10
Finite Elements in Fluids

April 23, 2019

Navier-Stokes numerical example

Problem formulation

Unsteady Navier-Stokes problem:
vt + (v · ∇)v − ν∇2v +∇p = f in Ω

∇ · v = 0 in Ω

v = vD on ΓD

n · σ = t on ΓN

In order to solve an unsteady Navier-Stokes problem a proper time integration
scheme must be chosen. The time integration can be performed using a mono-
lithic approach or so-called fractional-step/projection methods. This report deals
with the implementation of one representative for each approach, namely:

• Semi-implicit first order monolitic scheme

• Chorin-Temam projection method.

Discretization of the semi-implicit first order monolithic scheme

The momentum conservation equation can be rewritten as:

vt + C(v) +K(v) +∇p = f ,

where

C(v) = (v · ∇)v

K(v) = −ν∇2v.

By applying a classical one-step integration scheme the equation takes the form:

vn+1 − vn

∆t
+ C(v) +K(vn+θ) +∇pn+θ = fn+θ

∇ · vn+θ = 0

with ∆t = tn+1 − tn fn ≈ f(tn)

fn+θ = θfn+1 + (1− θ)fn.

Since there is no time derivative for p, the pressure gradient can be simply evaluated at time
tn+1. The same holds for the incompressibility constraint as long as the initial condition is
divergence-free and because fn+θ = θfn+1 + (1− θ)fn holds for any function.
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Choosing a semi-explicit approximation for the convective term C(v) we finally obtain the
first order approximation as follows:

vn+1 − vn

∆t
+ C(v) +K(vn+1) +∇pn+1 = fn+1

∇ · vn+1 = 0,

where
C(v) = (vn·∇)vn+1.

Before continuing with the finite element discretization the weak form has to be obtained by
projecting the above equations onto a space of weighting function w ∈ V for the momentum
equation and q ∈ Q for the incompressibility condition. To do so, neglecting the boundary
terms for simplification purposes, find the velocity vn+1 ∈ S and the pressure pn+1 ∈ Q, such
that for all (w, q) ∈ V × Q and where both functional spaces S and V verify the prescribed
boundary conditions vn+1 = vn+1

D on ∂Ω:

(
w,
vn+1 − vn

∆t

)
+ c(vn;w,vn+1) + a(w,vn+1) + b(w, pn+1) = (w,fn+1)

b(vn+1, q) = 0.

Then, the finite element discretization can be written as follows:

M

(
vn+1 − vn

∆t

)
+ (C(vn) + K)vn+1 + GTpn+1 = fn+1

Gvn+1 = 0.

Discretization of the Chorin-Temam projection method

Now the Chorin-Temam projection scheme is described as an example for a fractional-step
method. The idea of fractional step approaches is to divide the numerically complex time
integration into simpler substeps. Generally, a time-dependent problem of the form

∂w

∂t
+ Lw = f where Lw = L1w + L2w

can be divided into two steps. In case of the Chorin-Temam projection method the first step
looks as follows:

vn+1
int − vn

∆t
+ (v∗·∇)v∗∗ − ν∇2v∗∗ = fn+1 in Ω

vn+1
int = vn+1

D on ∂Ω.
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To further reduce the numerical costs the convective term is again replaced by a semi-explicit
approximation:

v∗ = vn and v∗∗ = vn+1
int .

Before proceeding with the finite element discretization the weak form of the first step equa-
tions has to be constructed. Find the intermediate velocity vn+1

int ∈ Sint, such that for all
w ∈ Vint and where both functional spaces Sint and Vint satisfy the Dirichlet boundary con-
ditions vn+1

int = vn+1
D on ∂Ω:(
w,
vn+1
int − vn

∆t

)
+ c(v∗;w,v∗∗) + a(w,v∗∗) = (w,fn+1).

From this weak form the finite element discretization can be derived:

M1

(
vn+1
int − vn

∆t

)
+ (C(v∗) + K)vn+1

int = fn+1.

The second step contains the pressure term and the incompressibility equation of the Navier-
Stokes problem:

vn+1 − vn+1
int

∆t
+∇pn+1 = 0 in Ω

∇ · vn+1 = 0 in Ω

n · vn+1 = n · vn+1
D on ∂Ω.

Due to the Helmholtz decomposition principle v = vs +∇φ, where vs is a solenoidal field
such that n · vs = 0, only the normal component of the velocity can be prescribed on the
boundary. This becomes clearer when rewriting the first equation of the second step as

vn+1 = vn+1
int −∆t∇pn+1 or vn+1

int = vn+1 + ∆t∇pn+1,

where vn+1
int can be understood as a composition of the divergence free velocity field vn+1

and the gradient of a scalar function −∆t∇pn+1. Even though only applying the normal
component of the velocity on the boundary leads to a spurious pressure boundary layer, it
does not prevent proper convergence of the algorithm as can be seen in the results later. In
general the second step can be see as the projection of the intermediate velocity onto the
solenoidal space:

vn+1 = Pvn+1
int and ∆t∇pn+1 = (I− P)vn+1

int .

The weak form is given by finding the end-of-step velocity vn+1 ∈ S and the pressure pn+1 ∈
Q, such that for all (w, q) ∈ V × Q and where both functional spaces S and V verify the
prescribed boundary conditions n · vn+1 = n · vn+1

D on ∂Ω:
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(
w,
vn+1
int − vn

∆t

)
+ b(w, pn+1) = 0

b(vn+1, q) = 0.

Deriving the finite element discretization from the weak form yields:

M2

(
vn+1
int − vn

∆t

)
+ GTpn+1 = 0

Gvn+1 = 0,

or in matrix form: (
M2/∆t G

GT 0

)(
vn+1

pp+1

)
=

(
M2v

n+1
int /∆t
h

)
.

This system resulting from the second step can be solved analogous to the Stoke problem by
applying two steps. First, computing the pressure field

(GTM−1
2 G)pn+1 =

1

∆t
GTvn+1

int ,

and finally computing the end-of-step velocity

M2v
n+1 = M2v

n+1
int −∆tGpn+1.

4



Moritz Jokeit Homework 10
Finite Elements in Fluids

April 23, 2019

Results

In the following section the results obtained by the presented methods are discussed. The
following constants were used during the execution of the computations:

• Reynold’s number: Re = 100

• Kinematic viscosity: ν = 1/Re

• Time step size: ∆t = 0.01

• Number of time steps: nt = 100

Furthermore, a uniform mesh of the size 10x10 with Q2Q1-elements was applied.

Figure 1 shows the pressure field for both method at time t = 1.0. Both show a smooth
pressure surface over the whole domain with the expected peaks at both upper corners of the
domain.

Figure 1: Pressure field of the semi-implicit first order monolithic scheme (left) and the
Chorin-Temam projection method (right) at time t = 1.00

When looking at the comparison of the velocity fields at time t = 1.0 in Figure 2 a slight
difference is notable. The size of the velocity vector for the Chorin-Temam projection are
slightly larger implying a higher velocity of the fluid in the upper right corner of the domain.

Figures 3 and 4 show the development of the streamlines over time. We can observe that
they develop in a similar way, but that in case of the semi-implicit first order monolithic
scheme the streamlines extend further into the lower part of the domain. Also the density
of the streamlines at the boarders of the domain is higher for the Chorin-Temam projection
method.
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Figure 2: Velocity field of the semi-implicit first order monolithic scheme (left) and the
Chorin-Temam projection method (right) at time t = 1.00

Additionally, the computational time for both methods was measured. The results showed
that the semi-implicit first order monolithic scheme was about 25% faster than the Chorin-
Temam projection method. This is probably caused by the additional computation of second
step, which was described in the previous section. Though, from literature it is known that
the lag in speed is compensated with a higher accuracy. With this in mind the differences in
the presented results can be explained.
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(a) Semi-implicit first order monolithic scheme,
t = 0.01

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Chorin-Temam projection method, t =
0.01
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(c) Semi-implicit first order monolithic scheme,
t = 0.25
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(d) Chorin-Temam projection method, t = 0.25
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(e) Semi-implicit first order monolithic scheme,
t = 0.50

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Chorin-Temam projection method, t = 0.50

Figure 3: Streamlines of the semi-implicit first order monolithic scheme (left) and the
Chorin-Temam projection method (right) at different points of time
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(a) Semi-implicit first order monolithic scheme,
t = 0.75
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(b) Chorin-Temam projection method, t = 0.75
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(c) Semi-implicit first order monolithic scheme,
t = 1.00
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(d) Chorin-Temam projection method, t = 1.00

Figure 4: Streamlines of the semi-implicit first order monolithic scheme (left) and the
Chorin-Temam projection method (right) at different points of time
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