HDG assignment \#3

Name: Orion Falip Garcia
Date: 05/06/2019

Problem Statement

Consider the domain $\Omega=[0,1]^{2}$ mich that $\partial \Omega=\Gamma_{0} U \Gamma_{N} U \Gamma_{R}$
and $\Gamma_{N} \cap \Gamma_{R}=\phi, \Gamma_{D} \cap \Gamma_{v}=\phi$ and $\Gamma_{D} \cap \Gamma_{N}=\phi$
yo hers:

$$
\left.\begin{array}{l}
\Gamma_{N} \equiv\left\{(x, y) \in \mathbb{R}^{2}: y=1\right\} \\
\Gamma_{R} \equiv\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\} \\
\Gamma_{D} \equiv \partial \Omega \backslash\left(\Gamma_{N} \cup R_{R}\right)
\end{array}\right] \rightarrow
$$

The following differential equation is defined:

$$
\left\{\begin{array}{cc}
-\nabla \cdot\left(k \nabla_{u}\right)=s & \text { in } \Omega \\
u=u_{0} & \text { on } \Gamma_{0} \\
\hat{m} \cdot\left(k \nabla_{u}\right)=t & \text { on } \Gamma_{N} \\
\hat{n} \cdot\left(k \nabla_{u}\right)+\gamma u=g & \text { on } \Gamma_{R}
\end{array}\right.
$$

We can split our domain in $M_{e l}$ elements such that

$$
\Omega=\bigcup_{i=1}^{m_{i l}} \bar{\Omega}_{i} \quad \text { and } \quad \Omega_{i} \cap \Omega_{j}=\phi
$$

which define internal boundaries (interface) Γ :

$$
\Gamma \equiv\left[\bigcup_{i=1}^{m} \partial \partial \Omega\right] \backslash \partial \Omega
$$

with that pelting an equarrient strong form can be written

$$
\begin{cases}-\nabla \cdot\left(k \nabla_{u}\right)=s & \text { in } \Omega_{i} \quad i=1, \ldots, m_{l} \\ u=U_{n} & \text { on } \Gamma_{D} \\ \hat{m} \cdot\left(k \nabla_{u}\right)=t & \text { om } \Gamma_{N} \\ \hat{m} \cdot\left(k \nabla_{u}\right)+\gamma u=g & \text { on } \Gamma_{R} \\ {[[u \hat{m}]]=\vec{o}} & \text { on } \Gamma \\ {\left[\left[M-\nabla_{u}\right]\right]=0} & \text { on } \Gamma\end{cases}
$$

If we define the flux as $\vec{y}=-k \nabla_{u}$ then we can write:

$$
\left\{\begin{array}{lll}
\vec{q}+k \nabla_{u}=\overrightarrow{0} & \text { in } \Omega_{i} & i=1, \ldots, m_{i} l \\
\nabla \cdot \vec{q}=s & \text { in } \Omega_{i} & i=1 \ldots, m_{l} \\
u=v_{0} & \text { om } \Gamma_{0} \\
\hat{m} \cdot \vec{q}=-t & \text { on } \Gamma_{M} \\
-\hat{m} \cdot \vec{q}+\gamma u=g & \text { on } \Gamma_{R} \\
{[u \hat{m}]=\overrightarrow{0}} & \text { on } \Gamma \\
{[\hat{n} \cdot \vec{q}]=0} & \text { on } \Gamma
\end{array}\right.
$$

with that we can wats the Hybridizable Desuantinnous Galerking method as:

HDG (strong)
Laval poblem (strong)

$$
\begin{cases}\nabla \vec{q}_{i}=s & \text { in } \Omega_{i} \\ \vec{q}+k \nabla_{u_{i}}=\vec{o} & \text { in } \Omega_{i} \\ u=u_{0} & \text { on } \partial \Omega_{i} \cap \Gamma_{0} \\ u=\hat{u} & \text { om } \partial \Omega_{i} \Gamma_{0}\end{cases}
$$

Global problem (strong)

To wintto- tho weak form it must be noticed that the bad problem (stony) remains tho name if we have Norman a holm B.C. So the weak form will be the same as the and in the Thoria on Hyludizatle Duscantioneus (aderkin. (HDG) per second andes Ellupte Problems

So HDG (Woak)

Lad nolvem (weak).

$$
\left\{\begin{array}{c}
-\left(\nabla_{N}, \overrightarrow{q_{1}}\right)_{\Omega_{i}}+\left\langle N, \hat{m}_{i}, \overrightarrow{q_{i}}\right\rangle \partial \mu_{i}=\left(N_{r}, f\right)_{\Omega_{i}} \\
-\left(\vec{w}, \vec{q}_{i}\right)_{\Omega_{i}}+\left(\nabla \cdot \vec{w}, u_{i}\right)_{\Omega_{i}}=\left\langle\hat{m}_{i} \cdot \vec{w}, u_{0}\right\rangle_{\partial \Omega_{i}, \Gamma_{0}}+\left\langle\hat{m}_{i} \cdot \vec{w}, \hat{u}\right\rangle_{\partial \Omega_{i}, \Gamma_{D}}
\end{array}\right\}
$$

Globol proklem (weak)
At thin poime we must motio thiat we have om extra oquatiom coming from Robor Boundary cordetions. witit the the Gobval poblem in weak form reads

$$
\begin{aligned}
& =\sum_{i=1}^{m g}\langle\nu, g\rangle \partial \Omega_{i} \cap \Gamma_{R}
\end{aligned}
$$

Problem 3
considering the andylical solution $u(x, y)=\operatorname{eep}(a x-k y)-\sin (x n x)-b \pi y)$ we th $\left[\begin{array}{ll}a=0,1 & k=1,2 \\ b=b & \gamma=3\end{array}\right]$

We can obtain the analytical ounce term as:

$$
\begin{aligned}
-\nabla \cdot\left(k \nabla_{u}\right)=S=- & {\left[a^{2} \exp (a x-k y)+\gamma^{2} \Pi^{2} \sin (\gamma \pi x-b \pi y)+\right.} \\
& \left.+k^{2} \exp (a x-k y)+b^{2} \Pi^{2} \sin \left(\gamma \Pi_{x}-b \pi y\right)\right]
\end{aligned}
$$

traction fences (on fluxes) can be obtained via $t=\hat{m} \cdot\left(k \nabla_{u}\right)$ or Γ_{N} sums our Neman $B C$ are om tho tor face $\hat{n}=(0,1)$ then

$$
t=k[-k \exp (a x-k y)+b \pi \cos (\gamma \pi x-b \pi y)]
$$

fogarding $g=g=\hat{m} \cdot\left(k \nabla_{u}\right)+\gamma u$ - with $\hat{m}=(0,-1)$ then

$$
y=k\left[k \exp (a x-k y)+b \pi \cos \left(\gamma \Pi_{x}-b \pi y\right)\right]+\gamma\left[\exp (a x-k y)-\sin \left(\gamma \Pi_{x}-b \Pi_{y}\right)\right]
$$

Regarchen y_{0} we have trio faced defined by $x=0$ and $x=1$ then

$$
\begin{aligned}
& \text { Face: } \quad U_{D}=\exp (-k y)-\sin (-6 \pi y) \\
& \text { Face 2: } \quad U_{D}=\exp (a-k y)-\operatorname{sim}(y \pi-b \pi y)
\end{aligned}
$$

Results

Considering that particular problem, in the following section the results will be analysed in order to ensure that the implementation of the method has been done properly.

Starting by analysing the behaviour of the solution with different meshes, let's consider a polynomial degree equal to on $(\mathrm{p}=1)$ and different meshes, each one one level more fine that the previous one. The following figure shows the meshes used:

Figure 1. Discretization of the geometry for different mesh refinement.

Numbering the meshes from one to five starting from the coarser mesh, the following results have been obtained:

Mesh 1

Figure 2. Solution of our problem 'u' and post-processed solution ' u *' for mesh 1 with polynomial degree $\mathrm{p}=1$.

Mesh 2

HDG solution: u

HDG solution: \mathbf{u}^{*}

Figure 3. Solution of our problem 'u' and post-processed solution ' u *' for mesh 2 with polynomial degree $\mathrm{p}=1$.

Mesh 3

HDG solution: u

HDG solution: \mathbf{u}^{*}

Figure 4. Solution of our problem ' u ' and post-processed solution ' u *' for mesh 3 with polynomial degree $\mathrm{p}=1$.

Mesh 4

HDG solution: u

HDG solution: \mathbf{u}^{*}

Figure 5. Solution of our problem ' u ' and post-processed solution ' u *' for mesh 4 with polynomial degree $\mathrm{p}=1$.

Mesh 5

HDG solution: u

HDG solution: \mathbf{u}^{*}

Figure 6. Solution of our problem 'u' and post-processed solution 'u*' for mesh 5 with polynomial degree $\mathrm{p}=1$.

From all previous figures, it is clear that even when keeping the polynomial degree at just $\mathrm{p}=1$, when refining the mesh the results improve quite drastically with just three of four levels of refinement. Although this result was expected, it is worth showing that since it is a good indicator that our implementation was done properly.

To show the effects of increasing the polynomial degree in HDG method, the following strategy is followed:

By keeping the mesh the same for all cases, Mesh 2 is chosen. From this, the polynomial degree is increasing from 1 to 4 to show the effects produced in the solution.

Figure 7. Solution of our problem 'u' and post-processed solution 'u*' for the Mesh 2 with polynomial degree $\mathrm{p}=1$.
$\mathrm{p}=2$

Figure 8. Solution of our problem 'u' and post-processed solution ' u *' for the Mesh 2 with polynomial degree $\mathrm{p}=2$.
$\mathrm{p}=\mathbf{3}$

HDG solution: u

HDG solution: \mathbf{u}^{*}

Figure 9. Solution of our problem ' u ' and post-processed solution ' u *' for the Mesh 2 with polynomial degree $\mathrm{p}=3$.
$\mathrm{p}=4$

Figure 10. Solution of our problem 'u' and post-processed solution ' u *' for the Mesh 2 with polynomial degree $\mathrm{p}=4$.

Again, the obvious and expected solution is that the solution quality increase when increasing the polynomial degree, achieving quite good results even for the solution and prost-processed solution.

Comparing all the previous results with the exact solution obtained from the analytical expression of the solution with WolframAlpha we clearly see that our solution is perfectly equivalent to the exact solution as seen in Figure 11.

Figure 11. Exact solution from the analytical expression obtained with WolframAlpha.

To end this work, a convergence study is presented when increasing the polynomial degree by keeping the same mesh (Mesh 2). The magnitudes used to make the convergency study are the errors for u, \mathbf{q} and u^{*} in the L_{2}-norm defined in the domain Ω.

In the following table the errors obtained are presented:

	Error		
p	u	\mathbf{q}	u^{\star}
1	3.1287	11.3127	0.3196
2	0.9785	11.5084	0.1860
3	0.5243	11.6609	0.1668
4	0.1894	11.6744	0.1640

Table 1. L_{2} error for different magnitudes.

Plotting the errors in terms of the polynomial degree:

Figure 12. Error in terms of the polynomial degree for the solution and post-processed solution.

Figure 13. Error in terms of the polynomial degree for the flux.

Figure 14. Error in terms of the polynomial degree for the flux.

