
 

 

 

 

 

 

 

 

 

 

 

 

Finite Elements for Fluids 

Assignment – HDG (#1) 

 

 

 

 
Author: Cristina Garcia Albela 

MsC in Computational Mechanics 

 

 



 

 

1. Problem statement 

Consider the domain Ω = [0,1]2 such that 𝜕Ω = Γ𝐷 ∪ Γ𝑁 ∪ Γ𝑅 with Γ𝐷 ∩ Γ𝑅 = ∅, Γ𝐷 ∩ Γ𝑁 = ∅ 

and Γ𝑁 ∩ Γ𝑅 = ∅. More precisely, set  

Γ𝑁 ≔ {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥 = 0}, 

Γ𝑅 ≔ {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 = 1}, 

Γ𝑁 ≔  𝜕Ω\(Γ𝑁 ∪ Γ𝑅) 

The following second -order linear scalar partial differential equation is defined  

{

−∇ ∙ (𝜅∇𝑢) = 𝑠               𝑖𝑛 Ω 
𝑢 = 𝑢𝐷                               𝑜𝑛 Γ𝐷
𝒏 ∙ (𝜅∇𝑢) = 𝑡                     𝑜𝑛 Γ𝑁  

𝒏 ∙ (𝜅∇𝑢) + 𝛾𝑢 = 𝑔         𝑜𝑛 Γ𝑅 

 

Where 𝜅 and 𝛾 are de diffusion and convection coefficients respectively, 𝒏 is the outward unit 

normal vector to the boundary, s is the volumetric source term and 𝑢𝐷, t and g are the Dirichlet, 

Neumann and Robin data imposed on the corresponding portions of the boundary 𝜕Ω. 

An equivalent strong form of the 2
nd

 order elliptic equations problem can be written in the broken 

computational domain as  

{
 
 

 
 
−𝛻 ∙ (𝜅𝛻𝑢) = 𝑠      𝑖𝑛 Ω𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2… . , 𝑛_𝑒𝑙
𝑢 = 𝑢𝐷                                                           𝑜𝑛 Γ𝐷
𝒏 ∙ (𝜅∇𝑢) = 𝑡                                                𝑜𝑛 Γ𝑁  

𝒏 ∙ (𝜅∇𝑢) + 𝛾𝑢 = 𝑔                                    𝑜𝑛 Γ𝑅
⟦𝑢𝒏⟧ = 𝟎                                                         𝑜𝑛 Γ
⟦𝒏 ∙ 𝜅∇𝑢⟧ = 0                                                 𝑜𝑛 Γ

 

where the two last equations represent the imposition of continuity of 𝑢 and the normal fluxes along 

the internal interfaces between the elements. 

Finally, the strong form is written in mixed form, as a system of first order equations over the broken 

domain 

{
  
 

  
 

𝛻 ∙ 𝒒 = 𝑠         𝑖𝑛 Ω𝑖
𝒒 + ∇𝑢 = 𝟎        𝑖𝑛 Ω𝑖
      𝑢 = 𝑢𝐷           𝑜𝑛 Γ𝐷
  𝒏 ∙ 𝑞 = −𝑡            𝑜𝑛 Γ𝑁

     𝒏 ∙ 𝒒 − 𝛾𝑢 = −𝑔      𝑜𝑛 Γ𝑅         
⟦𝑢𝒏⟧ = 𝟎            𝑜𝑛 Γ
⟦𝒏 ∙ 𝐪⟧ = 0      𝑜𝑛 Γ

 

 

2. HDG strong and weak forms 
 

2.1 Strong form 

Working with HDG the problem should be rewrite as two equivalent problems, a local element-

by-element problem in which 𝑢̂ hat is introduced and a second global problem in which 𝑢̂ is 

determined. 



 

 

Starting with the local problem, the strong form of the problem can be written as  

{
 
 

 
 
𝛻 ∙ 𝒒𝒊 = 𝑠                                    𝑖𝑛 Ω𝑖
𝒒 + ∇𝑢𝑖 = 𝟎                               𝑖𝑛 Ω𝑖
𝑢𝑖 = 𝑢𝐷                          𝑜𝑛 ∂Ω𝑖 ∩ Γ𝐷
𝑢𝑖 = 𝑢̂                            𝑜𝑛 ∂Ω𝑖\𝜕Ω

       𝑓𝑜𝑟 𝑖 = 1,… . 𝑛𝑒𝑙 

From it, an element-by-element solution for 𝑞𝑖 and 𝑢𝑖 is obtained as a function of the unknown 𝑢̂.  

Then, the global problem is defined to determine 𝑢̂, that corresponds to the imposition of the 

transmission conditions 

{
 
 

 
 ⟦𝑢𝒏⟧ = 𝟎                                        𝑜𝑛 Γ
⟦𝒏 ∙ 𝐪⟧ = 0                                     𝑜𝑛 Γ

 
𝒏𝒊 ∙ 𝒒𝒊 = −𝑡                  𝑜𝑛 ∂Ω𝑖 ∩ Γ𝑁
 𝒏𝒊 ∙ 𝒒𝒊 − 𝛾𝑢𝑖 = −𝑔       𝑜𝑛 ∂Ω𝑖 ∩ Γ𝑅

 

As 𝑢 = 𝑢̂ on Γ is imposed by the local problem, the continuity of the primal variable ⟦𝑢̂𝒏⟧ = 𝟎 is 

automatically imposed because 𝑢̂ is unique for adjacent elements, so that the transmission 

conditions can be rewritten just as  

{

⟦𝒏 ∙ 𝐪⟧ = 0                                     𝑜𝑛 Γ
𝒏𝒊 ∙ 𝒒𝒊 = −𝑡                  𝑜𝑛 ∂Ω𝑖 ∩ Γ𝑁
 𝒏𝒊 ∙ 𝒒𝒊 − 𝛾𝑢̂ = −𝑔       𝑜𝑛 ∂Ω𝑖 ∩ Γ𝑅

 

2.2 Weak forms 

Starting with the local problem, the weak formulation for each of the elements can are calculated, 

introducing the weighted functions 𝑣 and 𝒘. 

- First equation (𝛻 ∙ 𝒒𝒊 = 𝑠) 
 

(𝑣, (𝛻 ∙ 𝒒𝒊))Ω𝑖 = (𝑣, 𝑠) Ω𝑖 
 

𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚  (𝛻 ∙ (𝑣𝒒𝒊))Ω𝑖
= (𝑣(𝒏𝒊 ∙ 𝒒̂𝒊))𝝏Ω𝑖

= (𝛁𝑣 ∙ 𝒒𝒊)Ω𝑖 + (𝑣 ∙ 𝛁𝒒𝒊)Ω𝑖 

 

−(𝛁𝑣 ∙ 𝒒𝒊)Ω𝑖 + 〈𝑣, (𝒏𝒊 ∙ 𝒒̂𝒊)〉𝝏Ω𝑖 = (𝑣, 𝑠) Ω𝑖 

 

- Second equation (𝒒 + ∇𝑢𝑖 = 𝟎) 
 

(𝒘, 𝒒𝒊)Ω𝑖 + (𝒘,∇𝑢𝑖)Ω𝑖 = 𝟎 
 

𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 (∇ ∙ (𝒘𝑢𝑖))Ω𝑖
= ((𝒏𝒊 ∙ 𝒘)𝑢𝑖)𝝏Ω𝑖

= ((𝛁 ∙ 𝒘)𝑢𝑖)Ω𝑖
+ (𝒘,∇𝑢𝑖)Ω𝑖 

 

(𝒘, 𝒒𝒊)Ω𝑖 − ((𝛁 ∙ 𝒘), 𝑢𝑖)Ω𝑖
= −〈(𝒏𝒊 ∙ 𝒘)𝑢𝐷〉𝝏Ω𝑖∩Γ𝐷 − 〈(𝒏𝒊 ∙ 𝒘)𝑢̂〉𝝏Ω𝑖\Γ𝐷 

 

Introducing the numerical traces of the fluxes, that are defined element-by-element as  

 

𝒏𝒊 ∙ 𝒒̂𝒊:= {
𝒏𝒊 ∙ 𝒒𝒊 + 𝜏𝑖(𝑢𝑖 − 𝑢𝐷)       𝑜𝑛 𝜕Ω𝑖 ∩ Γ𝐷
𝒏𝒊 ∙ 𝒒𝒊 + 𝜏𝑖(𝑢𝑖 − 𝑢̂)           𝑜𝑛 𝜕Ω𝑖 ∩ Γ

 



 

 

The weak formulation for each element can be written defined finally as, given 𝑢𝐷 on Γ𝐷 and 𝑢̂ on 

Γ ∪ Γ𝑁 and on Γ ∪ Γ𝑅, find (𝒒𝒊, 𝑢𝑖) that satisfies  

 

−(𝛁𝑣 ∙ 𝒒𝒊)Ω𝑖 + 〈𝑣, (𝒏𝒊 ∙ 𝒒𝒊)〉𝝏Ω𝑖 + 〈𝑣, 𝜏𝑖𝑢𝑖〉𝜕Ω𝑖 = (𝑣, 𝑠) Ω𝑖 + 〈𝑣, 𝜏𝑖𝑢𝑖〉𝝏Ω𝑖∩Γ𝐷 + 〈𝑣, 𝜏𝑖𝑢̂〉𝝏Ω𝑖\Γ𝐷 

 

−(𝒘, 𝒒𝒊)Ω𝑖 + ((𝛁 ∙ 𝒘), 𝑢𝑖)Ω𝑖
= 〈(𝒏𝒊 ∙ 𝒘)𝑢𝐷〉𝝏Ω𝑖∩Γ𝐷 + 〈(𝒏𝒊 ∙ 𝒘)𝑢̂〉𝝏Ω𝑖\Γ𝐷 

 

For the global problem, being the weighted function 𝜇, the weak form is defined as find 𝑢̂ for all 𝜇 

such that  

∑〈𝜇,𝒏𝒊 ∙ 𝒒𝒊̂〉𝝏Ω𝑖\𝜕Ω +

𝑛𝑒𝑙

𝑖=1

∑〈𝜇, (𝒏𝒊 ∙ 𝒒𝒊̂ + 𝑡)〉𝝏Ω𝑖∩Γ𝑁 +

𝑛𝑒𝑙

𝑖=1

∑〈𝜇, (𝒏𝒊 ∙ 𝒒𝒊̂ − 𝛾𝑢̂ + 𝑔)〉𝝏Ω𝑖∩Γ𝑁

𝑛𝑒𝑙

𝑖=1

= 0 

 

Applying the numerical traces of the fluxes  
 

∑(〈𝜇, 𝜏𝑖𝑢𝑖〉𝝏Ω𝑖\Γ𝐷 + 〈𝜇,𝒏𝒊 ∙ 𝒒𝒊〉𝝏Ω𝑖\Γ𝐷 − 〈𝜇, 𝜏𝑖𝑢̂〉𝝏Ω𝑖\Γ𝐷 − 〈𝜇, 𝛾𝑢̂〉𝝏Ω𝑖\Γ𝑅)

𝑛𝑒𝑙

𝑖=1

= −∑(〈𝜇, 𝑡〉𝝏Ω𝑖∩Γ𝑁 + 〈𝜇, 𝑔〉𝝏Ω𝑖∩Γ𝑅)

𝑛𝑒𝑙

𝑖=1

 

 

 

3. Analytical expressions 

Previously to the implementation the analytical expressions for the terms 𝑢𝐷 , 𝑡 and 𝑔 should be 

derived as they are going to be added to be part of the new calculation that the code news passing 

from just Dirichlet conditions to the actual problem description with Neumann and Robin.  

Having the definition of 𝑢(𝑥, 𝑦) as following, Matlab tools for derivatives will be use in order to 

achieve the final expressions.   
 

𝑢(𝑥, 𝑦) = exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦) + 𝛾 cos(𝑐𝑥 + 𝑑𝑦)) 
 

Dirichlet boundary 
 

For Dirichlet boundary value 𝑢𝐷 no mathematical modifications of the previous equation are 

needed. The point will be in apply 𝑢(𝑥, 𝑦) definition in just those points that are part of Γ𝐷 (see in 

the following section how the different boundaries are recognised) 

 

 

 

 

 

 

 

 

Neumann & Robin boundaries  
 

In order to obtain Neumann and Robin boundary expressions, as we need to derivate u function, 

Matlab tools are going to be used. It is important to take into accounta that Neumann is just defined 

function u = analyticalPoisson(X) 

  
% Parameters 
k = 0.1; gamma = 0.3; 
a = 5.1; b= -6.2; c = 4.3; d = 3.4; 
% Points 
x = X(:,1); 
y = X(:,2); 
% Solution 
u = exp(k*sin(a*x+b*y) + *cos(c*x+d*y)); 

 



 

 

in the vertical line 𝑥 = 0, with normal vector 𝑛 = [−1, 0], whereas Robin is defined along 𝑦 = 1 

so that 𝑛 = [0, 1]. 

With help of Matlab tools (for derivations), the corresponding functions are easily obtained 

together with the source term, to be then implemented in the HDG code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So that, the expression can be written as  
 

𝑡 =  𝜅((𝜅𝑎 cos(𝑎𝑥 + 𝑏𝑦) − 𝛾𝑐 sin(𝑐𝑥 + 𝑑𝑦)) exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦)  +  𝛾 cos(𝑐𝑥 + 𝑑𝑦))) 
 

𝑔 =  𝜅((𝜅𝑏 cos(𝑎𝑥 + 𝑏𝑦) − 𝛾𝑑 sin(𝑐𝑥 + 𝑑𝑦)) exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦)  +  𝛾 cos(𝑐𝑥 + 𝑑𝑦)))  

+  𝛾 exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦)  +  𝛾 cos(𝑐𝑥 + 𝑑𝑦)) 
 

 

4. Matlab code implementation  

Once the discrete versions of the previous weak forms are determined, a matrix system of equations 

can be defined for each, local and global problems.  
 

Starting with the local problem, the following system of equation will be solved at each element  

 

  

 

remark the fact that no modifications will be needed in this part with respect to the previous 

implementation.  

Similarity, for the global problem  

 

 

 

Here, a modification must be done in the 𝐀ûû component, due to the contribution of Robin 

boundary condition, as well as in 𝐟û as consequences of 𝑡 and 𝑔 fluxes in the Neumann and Robin 

respectably. 
 

Once the solution of the local problem is obtained, it should be introduced in the global form, that 

finally becomes  

𝐊̂ 𝐮̂ = 𝐟 

 

% Parameters 

k= 0.1; gamma = 0.3; a = 5.1; b= -6.2; c = 4.3; d = 3.4; 

% Points 

x = X(:,1); 

y = X(:,2); 

 

t = (-

exp(conj(k).*sin(conj(b).*conj(y)+conj(a).*conj(x))+cos(conj(c).*conj(x)+conj(d).*conj(y)).*conj(ga

mma)).*conj(k).*(cos(conj(b).*conj(y)+conj(a).*conj(x)).*conj(a).*conj(k)-

conj(c).*conj(gamma).*sin(conj(c).*conj(x)+conj(d).*conj(y))))*(1/k); 

 

g = 

(gamma.*exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y))+exp(conj(k).*sin(conj(b).*conj(y)+conj(a).*con

j(x))+cos(conj(c).*conj(x)+conj(d).*conj(y)).*conj(gamma)).*conj(k).*(cos(conj(b).*conj(y)+conj(a).

*conj(x)).*conj(b).*conj(k)-conj(d).*conj(gamma).*sin(conj(c).*conj(x)+conj(d).*conj(y))))* (1/k); 

 

s =  

mu*(1/k)*(k.*(exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(c.^2.*gamma.*cos(c.*x+d.*y)+a.^2.*k.*s

in(a.*x+b.*y))+exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(d.^2.*gamma.*cos(c.*x+d.*y)+b.^2.*k.*

sin(a.*x+b.*y))-exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(a.*k.*cos(a.*x+b.*y)-

c.*gamma.*sin(c.*x+d.*y)).^2-exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(b.*k.*cos(a.*x+b.*y)-

d.*gamma.*sin(c.*x+d.*y)).^2)) 

 

 



 

 

Where 𝐊̂ and 𝐟 are defined as  

 

 

 

 

 

 

 

  



 

 

4.1 Matlab code. Boundary conditions 

Starting from a code that is designed for HDG problems where just Dirichlet boundary conditions 

are defined, some modifications must be done in order to introduce the new boundary conditions 

state, where Neumann and Robin BC will take part. 

Looking at the boundary domain definition, it is clear in which zones are each of them defined, as 

well as that no points are shared between any of them. Thus, the first step will be to introduce a 

modification in the code that allows it to check between the external elements, to which boundary 

condition they must be placed.  

Working on “GetFaces.m” function, the changes are implemented once the faces have been 

classified as internal or external. For each external face, with help of the connectivity matrix it is 

check their boundary face belong to Dirichlect, Neumann or Robin boundary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

function [intFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T) 

 

… 

 

intFaces = intFaces(intFaces(:,1)~=0,:); 

extFaces = extFaces(extFaces(:,1)~=0,:); 

 

%%BOUNDARIES 

  

ii = size(extFaces) 

in = 1; im = 1; io = 1; 

  

for i = 1:ii 

     

    ele_Faces = extFaces(i,1); 

    node1 = T(ele_Faces,1); 

    node2 = T(ele_Faces,2); 

    node3 = T(ele_Faces,3); 

     

    n1_x = X(node1,1); 

    n2_x = X(node2,1); 

    n3_x = X(node3,1); 

  

    n1_y = X(node1,2); 

    n2_y = X(node2,2); 

    n3_y = X(node3,2); 

     

    if n1_x == 0 && n2_x == 0 

        extFace_N(in,1) = extFaces(i,1); 

        extFace_N(in,2) = extFaces(i,2); 

        in = in +1; 

    elseif n1_x == 0 && n3_x == 0 

        extFace_N(in,1) = extFaces(i,1); 

        extFace_N(in,2) = extFaces(i,2); 

        in = in +1; 

    elseif n3_x == 0 && n2_x == 0 

        extFace_N(in,1) = extFaces(i,1); 

        extFace_N(in,2) = extFaces(i,2); 

        in = in +1; 

    elseif n1_y == 1 && n2_y == 1 

        extFace_R(im,1) = extFaces(i,1); 

        extFace_R(im,2) = extFaces(i,2); 

        im = im +1; 

    elseif n1_y == 1 && n3_y == 1 

        extFace_R(im,1) = extFaces(i,1); 

        extFace_R(im,2) = extFaces(i,2); 

        im = im +1; 

    elseif n3_y == 1 && n2_y == 1 

        extFace_R(im,1) = extFaces(i,1); 

        extFace_R(im,2) = extFaces(i,2);  

        im = im +1; 

    else 

        extFace_D(io,1) = extFaces(i,1); 

        extFace_D(io,2) = extFaces(i,2); 

        io = io +1; 

    end     

end 

end 

 

 

     

 



 

 

Once the boundaries are defined, the elements are distribution inside the F matrix must be 

reorganised, according the code structure in which the Dirichlet Boundaries should occupied the 

las positions. To do that, some modifications are introduced in “hgd_preprocess.m” function as 

follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the last change with respect to this topic will be done in “mainPoissonHDG.m” function, 

to redefine the dof for Dirichlet and the dof of the unknows according to the new configuration 

 

 

 

 

 

 

 

 

 

 

 

function [F infoFaces] = hdg_preprocess(X,T) 

  

% create infoFaces 

[intFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T(:,1:3)); 

  

nOfElements = size(T,1); 

nOfInteriorFaces = size(intFaces,1); 

nOfExteriorFaces_N = size(extFace_N,1); 

nOfExteriorFaces_R = size(extFace_R,1); 

nOfExteriorFaces_D = size(extFace_D,1); 

  

F = zeros(nOfElements,3); 

for iFace = 1:nOfInteriorFaces 

    infoFace = intFaces(iFace,:); 

    F(infoFace(1),infoFace(2)) = iFace; 

    F(infoFace(3),infoFace(4)) = iFace; 

end 

for iFace = 1:nOfExteriorFaces_N 

    infoFace = extFace_N(iFace,:); 

    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces; 

end 

for iFace = 1:nOfExteriorFaces_R 

    infoFace = extFace_R(iFace,:); 

    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces + 

nOfExteriorFaces_N; 

end 

for iFace = 1:nOfExteriorFaces_D 

    infoFace = extFace_D(iFace,:); 

    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces + 

nOfExteriorFaces_N + nOfExteriorFaces_N; 

end 

  

infoFaces.intFaces = intFaces; 

infoFaces.extFace_D = extFace_D; 

infoFaces.extFace_N = extFace_N; 

infoFaces.extFace_R = extFace_R; 

 

%Dirichlet BC 
%Dirichlet face nodal coordinates 
nOfFaceNodes = degree+1;  
nOfInteriorFaces = size(infoFaces.intFaces,1); 
nOfExteriorFaces = size(infoFaces.extFaces,1);  
nOfExteriorFaces_B = size(infoFaces.extFaces,1) - 

size(infoFaces.extFace_N,1) - size(infoFaces.extFace_R,1); 
nOfExteriorFaces_D = size(infoFaces.extFace_D,1); 

  
uDirichlet = 

computeProjectionFaces(@analyticalPoisson,infoFaces.extFace_D,X,T,referenc

eElement); 
dofDirichlet= (nOfInteriorFaces + nOfExteriorFaces_B) *nOfFaceNodes + 

(1:nOfExteriorFaces_D*nOfFaceNodes); 
%dofUnknown = 1:nOfInteriorFaces*nOfFaceNodes; 
dofUnknown = 1:(nOfInteriorFaces + nOfExteriorFaces_B)*nOfFaceNodes ; 

 
 



 

 

4.2 Matlab code. Elemental Matrices  

Once the external faces have been classified, is time to introduce the appropriate changes in the 

matrix system components, having in mind the already defined matrix system of equations. It has 

been decided to introduce three new functions to compute the elemental matrices, one for 

Neumann boundary element, one for Robin boundary element and the last one for that case in 

which an element has faces in both boundaries, maintaining the original function as well for the 

rest.   
 

The new term introduced to Neumann and Robin to 𝐟û is defined as “fn” and computed just in the 

element face that is part of one of the boundaries. In the case of 𝐀ûû parameter modifications, they 

are introduced just one the element face is part of the Robin boundary  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%%NEUMAN BOUNDARY 

function [Q,U,Qf,Uf,Alq,Alu,All,f_n] = 

KKeElementalMatricesIsoParametric_N(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos

_N) 

... 

 

%Identify the nodes of the face in the Bounday 

FACE = infoFaces.extFace_N(pos_N,2); 

FACE_NODE = faceNodes(FACE,:); 

 

... 

... 

 

%% Faces computations 

Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes); 

Auu = zeros(nOfElementNodes,nOfElementNodes); 

Alu = zeros(3*nOfFaceNodes,nOfElementNodes); 

All = zeros(3*nOfFaceNodes,3*nOfFaceNodes); 

fn = zeros(3*nOfFaceNodes,1); 

%Is it possible to remove this loop? 

for iface = 1:nOfFaces     

    tau_f = tau(iface); 

    nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face 

    dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2); 

    dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2); 

    dline = dxdxiNorm.*IPw_f'; 

    nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;     

%Face matrices 

    ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes); 

     

    if iface == FACE 

    X_fnodes = Xe([FACE_NODE],:) 

    X_fg = N1d*X_fnodes; 

    t_Term = analyticalPoisson_N(X_fg); 

    t_vect = N1d'*(spdiags(dline,0,ngf,ngf))*t_Term; 

    fn(ind_face,1) = fn(ind_face,1) + t_vect; 

    end 

     

    Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d); 

    Alq(ind_face,2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d); 

    Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;   

    Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f; 

    Alu(ind_face,nodes) = Alu(ind_face,nodes) + Auu_f; 

    All(ind_face,ind_face) = -Auu_f; 

end 

  

% Elemental mapping 

Aqu = -mu*Auq'; Aul = -Alu'; Aql = mu*Alq'; 

A = [Auu Auq; Aqu Aqq]; 

UQ = -A\[Aul;Aql]; 

fUQ= A\[fe;zeros(2*nOfElementNodes,1)]; 

U = UQ(1:nOfElementNodes,:);  

Uf=fUQ(1:nOfElementNodes); % maps lamba into U 

  

Q = UQ(nOfElementNodes+1:end,:);  

Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, for each element K and f matrices will be  

 

 

 

 

 

%%ROBIN BOUNDARY 

function [Q,U,Qf,Uf,Alq,Alu,All,f_n] = 

KKeElementalMatricesIsoParametric_R(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos

_R) 

... 

 

%Identify the nodes of the face in the Bounday 

FACE = infoFaces.extFace_R(pos_N,2); 

FACE_NODE = faceNodes(FACE,:); 

 

... 

... 

 

%% Faces computations 

Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes); 

Auu = zeros(nOfElementNodes,nOfElementNodes); 

Alu = zeros(3*nOfFaceNodes,nOfElementNodes); 

All = zeros(3*nOfFaceNodes,3*nOfFaceNodes); 

fn = zeros(3*nOfFaceNodes,1); 

kappa = 0.1;  gamma = 0.3; 

%Is it possible to remove this loop? 

for iface = 1:nOfFaces     

    tau_f = tau(iface); 

    nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face 

    dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2); 

    dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2); 

    dline = dxdxiNorm.*IPw_f'; 

    nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;     

    %Face matrices 

    ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes); 

    Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d); 

    Alq(ind_face,2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d); 

    Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;   

    Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f; 

    Alu(ind_face,nodes) = Alu(ind_face,nodes) + Auu_f; 

    All(ind_face,ind_face) = -Auu_f; 

     

    %%%Robin modifications 

    if iface == FACE 

    X_fnodes = Xe([FACE_NODE],:) 

    X_fg = N1d*X_fnodes; 

    g_Term = analyticalPoisson_R(X_fg); 

    g_vect = N1d'*(spdiags(dline,0,ngf,ngf))*g_Term; 

    fn(ind_face,1) = fn(ind_face,1) + g_vect; 

     

    All(ind_face,ind_face) =  All(ind_face,ind_face) -

N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*gamma*(1/kappa); 

    end 

     

end 

  

% Elemental mapping 

Aqu = -mu*Auq'; Aul = -Alu'; Aql = mu*Alq'; 

A = [Auu Auq; Aqu Aqq]; 

UQ = -A\[Aul;Aql]; 

fUQ= A\[fe;zeros(2*nOfElementNodes,1)]; 

U = UQ(1:nOfElementNodes,:);  

Uf=fUQ(1:nOfElementNodes); % maps lamba into U 

  

Q = UQ(nOfElementNodes+1:end,:);  

Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q 

 

 

%Elemental matrices to be assembled 
KKe = Alq*Qe + Alu*Ue + All; 
ffe = - fn - (Alq*Qfe + Alu*Ufe); 

 

 



 

 

5. Problem solution 

Once the code is implemented, defined meshes “mesh4”, with 512 triangular elements, “mesh2” 

with 32 triangular elements and “mesh1” with 8 triangular elements will be tried to solve the 

problem, to reach the first conclusions about the problem behaviour and results accuracy. 
 

CASE 1: mesh1_P2 & P4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CASE 2: mesh2_P2  
 

CASE 3: mesh1_P2 

Working with such a rude mesh in which there are just 8 elements, first results show the importance 

of the polynomial degree approximation, most especially in 𝑢 results. See how for the polynomial 

interpolation of degree 4 quite good results are already obtained. However, more conclusion will 

be reached in the following convergence study.  

 

CASE 2: mesh2_P1&P2 & P4 

 

 

 

 

 

 

 

 

 

Figure 1. HDG  𝑢 solution P2 mesh 4 Figure 1. HDG solution 𝑢 P2 mesh 1 Figure 2. HDG solution 𝑢∗ P2 mesh 1 

Figure 3. HDG solution 𝑢 P4 mesh 1 Figure 4. HDG solution 𝑢∗ P4 mesh 1 

Figure 5. HDG solution 𝑢 P1 mesh 2 Figure 6. HDG solution 𝑢∗ P1 mesh 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For mesh 2, three different polynomial degrees have been introduced to check more in detail how 

it affects to the solution accuracy. Once again, the principal effects appear un 𝑢 solution. See how 

rude the solution is with 3 nodes por element (Figure 5) and how it is improved until reach such a 

good approximation, in which we can see the “mesh lines” with 6 nodes per element (Figure 7) and 

9 nodes per element (Figure 9). 

 

CASE 3: mesh4_P2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, an example for mesh 4, quite a good mesh with 512 is done. See how for a finest mesh, it 

is not needed to use polynomial degrees of order 3 or higher to obtain quite accurate solutions. 

Figure 7. HDG solution 𝑢 P2 mesh 2 Figure 8. HDG solution 𝑢∗ P2 mesh 2 

Figure 9. HDG solution 𝑢 P3 mesh 2 
Figure 10. HDG solution 𝑢∗ P3 mesh 2 

Figure 11. HDG solution 𝑢 P2 mesh 4 Figure 12. HDG solution 𝑢∗ P2 mesh 4 



 

 

6. Convergence study  

Until the moment, different problems have been solved for different meshes and polynomial 

approximations. From those plots, first conclusion can be reached but it will be with the 

convergence error study with which a deeper analysis of the results accuracy can be done. For it, 

the problem will be solved with 4 meshes for k = 1,2,3,4. Then, results will be plot following the 

scheme of the notes for a better interpretation of them.  
 

First of all, the error variation for a same mesh with different k polynomial approximations is shown. 

In this way, it can check if it works as expected going lower as the degrees of approximation 

increases. Then, plots for mesh 2 and mesh 4 are shown. 

 

Figure above shows error plots for both meshes, that in both cases have the expected behaviour. 

First of all, the error for post-processing solution is always smaller that for 𝑢 solution. Both errors 

have the same tendency, going to a smaller name as k goes larger.  Moreover, if we compare the 

results between them, the error value for 𝑢 as for 𝑢∗ is always smaller for the finest mesh (mesh 4, 

Figure 14).  

Taking all of this into account, it seems that the obtained results will be validated having such a good 

accuracy, but for be sure about it, a convergence study with four different meshes is done. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Error plots for mesh 2 Figure 14. Error plot for mesh 4 

Figure 15 Convergence plot 



 

 

The figure above shows error results, grouping in a same line those that has the same polynomial 

degree 𝑝 for 𝑢 and 𝑢∗. See how for a same size ℎ, the error of 𝑢∗(𝑝) is lower than the error 𝑢(𝑝 +

1), being the solution 𝑢∗ more accurate for lower degree than the solution 𝑢. This is quite a good 

indicator of the good implementation of the method, working as expected if it is compared with the 

convergence plots of the biography. Thus, we can conclude that the method is correctly 

implemented and can be sure about the accuracy of the results.  

 


