

Finite Elements for Fluids
Assignment – HDG (#1)

Author: Cristina Garcia Albela
MsC in Computational Mechanics

1. Problem statement

Consider the domain Ω = [0,1](such that 𝜕Ω = Γ+ ∪ Γ- ∪ Γ.	with Γ+ ∩ Γ. = ∅, Γ+ ∩ Γ- = ∅
and Γ- ∩ Γ. = ∅. More precisely, set

Γ- ≔ {(𝑥, 𝑦) ∈ ℝ(∶ 𝑥 = 0},

Γ. ≔ {(𝑥, 𝑦) ∈ ℝ(∶ 𝑦 = 1},

Γ- ≔ 	𝜕Ω\(Γ- ∪ Γ.)

The following second -order linear scalar partial differential equation is defined

=

−∇ ∙ (𝜅∇𝑢) = 𝑠															𝑖𝑛	Ω	
𝑢 = 𝑢+																															𝑜𝑛	Γ+
𝒏 ∙ (𝜅∇𝑢) = 𝑡																					𝑜𝑛	Γ-	
𝒏 ∙ (𝜅∇𝑢) + 𝛾𝑢 = 𝑔									𝑜𝑛	Γ.	

Where 𝜅 and 𝛾 are de diffusion and convection coefficients respectively, 𝒏 is the outward unit
normal vector to the boundary, s is the volumetric source term and 𝑢+, t and g are the Dirichlet,
Neumann and Robin data imposed on the corresponding portions of the boundary 𝜕Ω.

An equivalent strong form of the 2nd order elliptic equations problem can be written in the broken
computational domain as

⎩
⎪
⎨

⎪
⎧
−𝛻 ∙ (𝜅𝛻𝑢) = 𝑠						𝑖𝑛	ΩR, 𝑓𝑜𝑟	𝑖 = 1,2… . , 𝑛_𝑒𝑙
𝑢 = 𝑢+																																																											𝑜𝑛	Γ+
𝒏 ∙ (𝜅∇𝑢) = 𝑡																																																𝑜𝑛	Γ-	
𝒏 ∙ (𝜅∇𝑢) + 𝛾𝑢 = 𝑔																																				𝑜𝑛	Γ.
⟦𝑢𝒏⟧ = 𝟎																																																									𝑜𝑛	Γ
⟦𝒏 ∙ 𝜅∇𝑢⟧ = 0																																																	𝑜𝑛	Γ

where the two last equations represent the imposition of continuity of 𝑢 and the normal fluxes along
the internal interfaces between the elements.

Finally, the strong form is written in mixed form, as a system of first order equations over the broken
domain

⎩
⎪⎪
⎨

⎪⎪
⎧

𝛻 ∙ 𝒒 = 𝑠									𝑖𝑛	ΩR
𝒒 + ∇𝑢 = 𝟎								𝑖𝑛	ΩR
						𝑢 = 𝑢+											𝑜𝑛	Γ+
		𝒏 ∙ 𝑞 = −𝑡												𝑜𝑛	Γ-

					𝒏 ∙ 𝒒 − 𝛾𝑢 = −𝑔						𝑜𝑛	Γ.									
⟦𝑢𝒏⟧ = 𝟎												𝑜𝑛	Γ
⟦𝒏 ∙ 𝐪⟧ = 0						𝑜𝑛	Γ

2. HDG strong and weak forms

2.1 Strong form

Working with HDG the problem should be rewrite as two equivalent problems, a local element-
by-element problem in which 𝑢̀ hat is introduced and a second global problem in which 𝑢̀ is
determined.

Starting with the local problem, the strong form of the problem can be written as

⎩
⎪
⎨

⎪
⎧
𝛻 ∙ 𝒒𝒊 = 𝑠																																				𝑖𝑛	ΩR
𝒒 + ∇𝑢R = 𝟎																															𝑖𝑛	ΩR
𝑢R = 𝑢+																										𝑜𝑛	 ∂ΩR ∩ Γ+
𝑢R = 𝑢̀																												𝑜𝑛	 ∂ΩR\𝜕Ω

							𝑓𝑜𝑟	𝑖 = 1,… . 𝑛cd

From it, an element-by-element solution for 𝑞R and 𝑢R is obtained as a function of the unknown 𝑢̀.

Then, the global problem is defined to determine 𝑢̀, that corresponds to the imposition of the
transmission conditions

⎩
⎪
⎨

⎪
⎧⟦𝑢𝒏⟧ = 𝟎																																								𝑜𝑛	Γ
⟦𝒏 ∙ 𝐪⟧ = 0																																					𝑜𝑛	Γ	
𝒏𝒊 ∙ 𝒒𝒊 = −𝑡																		𝑜𝑛	 ∂ΩR ∩ Γ-
	𝒏𝒊 ∙ 𝒒𝒊 − 𝛾𝑢R = −𝑔							𝑜𝑛	 ∂ΩR ∩ Γ.

As 𝑢 = 𝑢̀	on Γ is imposed by the local problem, the continuity of the primal variable ⟦𝑢̀𝒏⟧ = 𝟎 is
automatically imposed because 𝑢̀	is unique for adjacent elements, so that the transmission
conditions can be rewritten just as

e
⟦𝒏 ∙ 𝐪⟧ = 0																																					𝑜𝑛	Γ
𝒏𝒊 ∙ 𝒒𝒊 = −𝑡																		𝑜𝑛	 ∂ΩR ∩ Γ-
	𝒏𝒊 ∙ 𝒒𝒊 − 𝛾𝑢̀ = −𝑔							𝑜𝑛	 ∂ΩR ∩ Γ.

2.2 Weak forms

Starting with the local problem, the weak formulation for each of the elements can are calculated,
introducing the weighted functions 𝑣 and 𝒘.
- First equation (𝛻 ∙ 𝒒𝒊 = 𝑠)

(𝑣, (𝛻 ∙ 𝒒𝒊))hi = (𝑣, 𝑠)	hi

𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔	𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	𝑡ℎ𝑒𝑜𝑟𝑒𝑚		p𝛻 ∙ (𝑣𝒒𝒊)qhi =
(𝑣(𝒏𝒊 ∙ 𝒒r𝒊))𝝏hi

= (𝛁𝑣 ∙ 𝒒𝒊)hi + (𝑣 ∙ 𝛁𝒒𝒊)hi

−(𝛁𝑣 ∙ 𝒒𝒊)hi + 〈𝑣, (𝒏𝒊 ∙ 𝒒r𝒊)〉𝝏hi = (𝑣, 𝑠)	hi

- Second equation (𝒒 + ∇𝑢R = 𝟎)

(𝒘, 𝒒𝒊)hi + (𝒘, ∇𝑢R)hi = 𝟎

𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔	𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	𝑡ℎ𝑒𝑜𝑟𝑒𝑚	p∇ ∙ (𝒘𝑢R)qhi = ((𝒏𝒊 ∙ 𝒘)𝑢R)𝝏hi
= p(𝛁 ∙ 𝒘)𝑢Rqhi + (𝒘, ∇𝑢R)hi

(𝒘, 𝒒𝒊)hi − p(𝛁 ∙ 𝒘), 𝑢Rqhi = −〈(𝒏𝒊 ∙ 𝒘)𝑢+〉𝝏hi∩wx − 〈(𝒏𝒊 ∙ 𝒘)𝑢̀〉𝝏hi\wx

Introducing the numerical traces of the fluxes, that are defined element-by-element as

𝒏𝒊 ∙ 𝒒r𝒊: = z𝒏𝒊 ∙ 𝒒𝒊 + 𝜏R
(𝑢R − 𝑢+)							𝑜𝑛	𝜕ΩR ∩ Γ+

𝒏𝒊 ∙ 𝒒𝒊 + 𝜏R(𝑢R − 𝑢̀)											𝑜𝑛	𝜕ΩR ∩ Γ

The weak formulation for each element can be written defined finally as, given 𝑢+ on Γ+	and 𝑢̀ on
Γ ∪ Γ- and on Γ ∪ Γ., find (𝒒𝒊, 𝑢R)	that satisfies

−(𝛁𝑣 ∙ 𝒒𝒊)hi + 〈𝑣, (𝒏𝒊 ∙ 𝒒𝒊)〉𝝏hi + 〈𝑣, 𝜏R𝑢R〉|hi = (𝑣, 𝑠)	hi + 〈𝑣, 𝜏R𝑢R〉𝝏hi∩wx + 〈𝑣, 𝜏R𝑢̀〉𝝏hi\wx

−(𝒘, 𝒒𝒊)hi + p(𝛁 ∙ 𝒘), 𝑢Rqhi = 〈(𝒏𝒊 ∙ 𝒘)𝑢𝐷〉𝝏Ω𝑖∩Γ𝐷 + 〈(𝒏𝒊 ∙ 𝒘)𝑢r〉𝝏Ω𝑖\Γ𝐷

For the global problem, being the weighted function 𝜇, the weak form is defined as find 𝑢̀ for all 𝜇
such that

�〈𝜇, 𝒏𝒊 ∙ 𝒒�r 〉𝝏Ω𝑖\𝜕Ω +
���

R��

�〈𝜇, (𝒏𝒊 ∙ 𝒒�r + 𝑡)〉𝝏Ω𝑖∩Γ𝑁 +
���

R��

�〈𝜇, (𝒏𝒊 ∙ 𝒒�r − 𝛾𝑢̀ + 𝑔)〉𝝏Ω𝑖∩Γ𝑁

���

R��

= 0

Applying the numerical traces of the fluxes

�p〈𝜇, 𝜏𝑖𝑢𝑖〉𝝏hi\wx + 〈𝜇, 𝒏𝒊 ∙ 𝒒𝒊〉𝝏hi\wx − 〈𝜇, 𝜏𝑖𝑢̀〉𝝏hi\wx − 〈𝜇, 𝛾𝑢̀〉𝝏hi\w�q
���

R��

= −�p〈𝜇, 𝑡〉𝝏Ω𝑖∩Γ𝑁 + 〈𝜇, 𝑔〉𝝏Ω𝑖∩Γ𝑅q
���

R��

3. Analytical expressions

Previously to the implementation the analytical expressions for the terms 𝑢+, 𝑡 and 𝑔 should be
derived as they are going to be added to be part of the new calculation that the code news passing
from just Dirichlet conditions to the actual problem description with Neumann and Robin.
Having the definition of 𝑢(𝑥, 𝑦) as following, Matlab tools for derivatives will be use in order to
achieve the final expressions.

𝑢(𝑥, 𝑦) = exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦) + 𝛾 cos(𝑐𝑥 + 𝑑𝑦))

Dirichlet boundary

For Dirichlet boundary value 𝑢+ no mathematical modifications of the previous equation are
needed. The point will be in apply 𝑢(𝑥, 𝑦) definition in just those points that are part of Γ+ (see in
the following section how the different boundaries are recognised)

Neumann & Robin boundaries

To Neumann and Robin boundaries parameters 𝑡 and 𝑔 some modifications must be done. Starting
with Neumann boundary, looking that it is defined just along 𝑥 = 0 it is concluded that the gradient

function u = analyticalPoisson(X)

% Parameters
mu = 0.1; alpha = 0.3;
a = 5.1; b= -6.2; c = 4.3; d = 3.4;
% Points
x = X(:,1);
y = X(:,2);
% Solution
u = exp(mu*sin(a*x+b*y) + alpha*cos(c*x+d*y));

operator will just affects to the normal direction, so that y-direction. On the other hand, as Robin
boundary is defined along 𝑦 = 1 the gradient will be applied to the x-direction.
With help of Matlab tools (for derivations), the corresponding functions are easily obtained as
(included de source term)

So that, the expression will be

𝑡	 = 	𝜅p(𝜅𝑎 cos(𝑎𝑥 + 𝑏𝑦) − 𝛾𝑐 sin(𝑐𝑥 + 𝑑𝑦)) exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦)	+ 	𝛾 cos(𝑐𝑥 + 𝑑𝑦))q

𝑔	 = 	𝜅p(𝜅𝑏 cos(𝑎𝑥 + 𝑏𝑦) − 𝛾𝑑 sin(𝑐𝑥 + 𝑑𝑦)) exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦) 	+ 	𝛾 cos(𝑐𝑥 + 𝑑𝑦))q 	
+ 	𝛾 exp(𝜅 sin(𝑎𝑥 + 𝑏𝑦)	+ 	𝛾 cos(𝑐𝑥 + 𝑑𝑦))

4. Matlab code implementation

Once the discrete versions of the previous weak forms are determined, a matrix system of equations
can be defined for each, local and global problems.

Starting with the local problem, the following system of equation will be solved at each element

remark the fact that no modifications will be needed in this part with respect to the previous
implementation.
Similarity, for the global problem

Here, a modification must be done in the 𝐀ûû component, due to the contribution of Robin
boundary condition, as well as in 𝐟û as consequences of 𝑡 and 𝑔 fluxes in the Neumann and Robin
respectably.

Once the solution of the local problem is obtained, it should be introduced in the global form, that
finally becomes

𝐊�	𝐮r = 𝐟�

% Parameters
k= 0.1; gamma = 0.3; a = 5.1; b= -6.2; c = 4.3; d = 3.4;
% Points
x = X(:,1);
y = X(:,2);

t = -
exp(conj(k).*sin(conj(b).*conj(y)+conj(a).*conj(x))+cos(conj(c).*conj(x)+conj(d).*conj(y)).*con
j(gamma)).*conj(k).*(cos(conj(b).*conj(y)+conj(a).*conj(x)).*conj(a).*conj(k)-
conj(c).*conj(gamma).*sin(conj(c).*conj(x)+conj(d).*conj(y)));

g = gamma.*exp(gamma.*cos(c.*x + d.*y) + k.*sin(a.*x + b*y)) +
exp(conj(k).*sin(conj(b).*conj(y) + conj(a).*conj(x)) + cos(conj(c).*conj(x) +
conj(d).*conj(y)).*conj(gamma)).*conj(k).*(cos(conj(b).*conj(y) +
conj(a).*conj(x)).*conj(b).*conj(k) - conj(d).*conj(gamma).*sin(conj(c).*conj(x) +
conj(d).*conj(y)));

s =
k.*(exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(c.^2.*gamma.*cos(c.*x+d.*y)+a.^2.*k.*sin(a.*
x+b.*y))+exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(d.^2.*gamma.*cos(c.*x+d.*y)+b.^2.*k.*si
n(a.*x+b.*y))-exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(a.*k.*cos(a.*x+b.*y)-
c.*gamma.*sin(c.*x+d.*y)).^2-
exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(b.*k.*cos(a.*x+b.*y)-
d.*gamma.*sin(c.*x+d.*y)).^2);

Where 𝐊� and 𝐟� are defined as

4.1 Matlab code. Boundary conditions

Starting from a code that is designed for HDG problems where just Dirichlet boundary conditions
are defined, some modifications must be done in order to introduce the new boundary conditions
state, where Neumann and Robin BC will take part.
Looking at the boundary domain definition, it is clear in which zones are each of them defined, as
well as that no points are shared between any of them. Thus, the first step will be to introduce a
modification in the code that allows it to check between the external elements, to which boundary
condition they must be placed.
Working on “GetFaces.m” function, the changes are implemented once the faces have been
classified as internal or external. For each external face, with help of the connectivity matrix it is
check their boundary face belong to Dirichlect, Neumann or Robin boundary.

function [intFaces,extFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T)

…

intFaces = intFaces(intFaces(:,1)~=0,:);
extFaces = extFaces(extFaces(:,1)~=0,:);

%%BOUNDARIES

ii = size(extFaces)
in = 1; im = 1; io = 1;

for i = 1:ii

 ele_Faces = extFaces(i,1);
 node1 = T(ele_Faces,1);
 node2 = T(ele_Faces,2);
 node3 = T(ele_Faces,3);

 n1_x = X(node1,1);
 n2_x = X(node2,1);
 n3_x = X(node3,1);

 n1_y = X(node1,2);
 n2_y = X(node2,2);
 n3_y = X(node3,2);

 if n1_x == 0 && n2_x == 0
 extFace_N(in,1) = extFaces(i,1);
 extFace_N(in,2) = extFaces(i,2);
 in = in +1;
 elseif n1_x == 0 && n3_x == 0
 extFace_N(in,1) = extFaces(i,1);
 extFace_N(in,2) = extFaces(i,2);
 in = in +1;
 elseif n3_x == 0 && n2_x == 0
 extFace_N(in,1) = extFaces(i,1);
 extFace_N(in,2) = extFaces(i,2);
 in = in +1;
 elseif n1_y == 1 && n2_y == 1
 extFace_R(im,1) = extFaces(i,1);
 extFace_R(im,2) = extFaces(i,2);
 im = im +1;
 elseif n1_y == 1 && n3_y == 1
 extFace_R(im,1) = extFaces(i,1);
 extFace_R(im,2) = extFaces(i,2);
 im = im +1;
 elseif n3_y == 1 && n2_y == 1
 extFace_R(im,1) = extFaces(i,1);
 extFace_R(im,2) = extFaces(i,2);
 im = im +1;
 else
 extFace_D(io,1) = extFaces(i,1);
 extFace_D(io,2) = extFaces(i,2);
 io = io +1;
 end
end
end

Once the boundaries are defined, the elements are distribution inside the F matrix must be
reorganised, according the code structure in which the Dirichlet Boundaries should occupied the
las positions. To do that, some modifications are introduced in “hgd_preprocess.m” function as
follows

Finally, the last change with respect to this topic will be done in “mainPoissonHDG.m” function,
to redefine the dof for Dirichlet and the dof of the unknows according to the new configuration

function [F infoFaces] = hdg_preprocess(X,T)

% create infoFaces
[intFaces extFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T(:,1:3));

nOfElements = size(T,1);
nOfInteriorFaces = size(intFaces,1);
nOfExteriorFaces = size(extFaces,1);
nOfExteriorFaces_N = size(extFace_N,1);
nOfExteriorFaces_R = size(extFace_R,1);
nOfExteriorFaces_D = size(extFace_D,1);

F = zeros(nOfElements,3);
for iFace = 1:nOfInteriorFaces
 infoFace = intFaces(iFace,:);
 F(infoFace(1),infoFace(2)) = iFace;
 F(infoFace(3),infoFace(4)) = iFace;
end
for iFace = 1:nOfExteriorFaces_N
 infoFace = extFace_N(iFace,:);
 F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces;
end
for iFace = 1:nOfExteriorFaces_R
 infoFace = extFace_R(iFace,:);
 F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces +
nOfExteriorFaces_N;
end
for iFace = 1:nOfExteriorFaces_D
 infoFace = extFace_D(iFace,:);
 F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces +
nOfExteriorFaces_N + nOfExteriorFaces_N;
end

infoFaces.intFaces = intFaces;
infoFaces.extFaces = extFaces;
infoFaces.extFace_D = extFace_D;
infoFaces.extFace_N = extFace_N;
infoFaces.extFace_R = extFace_R;

%Dirichlet BC
%Dirichlet face nodal coordinates
nOfFaceNodes = degree+1;
nOfInteriorFaces = size(infoFaces.intFaces,1);
nOfExteriorFaces = size(infoFaces.extFaces,1);
nOfExteriorFaces_B = size(infoFaces.extFaces,1) -
size(infoFaces.extFace_N,1) - size(infoFaces.extFace_R,1);
nOfExteriorFaces_D = size(infoFaces.extFace_D,1);

uDirichlet =
computeProjectionFaces(@analyticalPoisson,infoFaces.extFace_D,X,T,referenc
eElement);
dofDirichlet= (nOfInteriorFaces + nOfExteriorFaces_B) *nOfFaceNodes +
(1:nOfExteriorFaces_D*nOfFaceNodes);
%dofUnknown = 1:nOfInteriorFaces*nOfFaceNodes;
dofUnknown = 1:(nOfInteriorFaces + nOfExteriorFaces_B)*nOfFaceNodes ;

4.2 Matlab code. Elemental Matrices

Once the external faces have been classified, is time to introduce the appropriate changes in the
matrix system components, having in mind the already defined matrix system of equations. It has
been decided to introduce three new functions to compute the elemental matrices, one for
Neumann boundary element, one for Robin boundary element and the last one for that case in
which an element has faces in both boundaries, maintaining the original function as well for the
rest.

The new term introduced to Neumann and Robin to 𝐟û is defined as “f_n” and computed just in
the element face that is part of one of the boundaries. In the case of 𝐀ûû parameter modifications,
they are introduced just one the element face is part of the Robin boundary

%%NEUMAN BOUNDARY
function [Q,U,Qf,Uf,Alq,Alu,All,f_n] =
KKeElementalMatricesIsoParametric_N(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos
_N)
...

%Identify the nodes of the face in the Bounday
FACE = infoFaces.extFace_N(pos_N,2);
FACE_NODE = faceNodes(FACE,:);

...
...

%% Faces computations
Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes);
Auu = zeros(nOfElementNodes,nOfElementNodes);
Alu = zeros(3*nOfFaceNodes,nOfElementNodes);
All = zeros(3*nOfFaceNodes,3*nOfFaceNodes);
%Is it possible to remove this loop?
for iface = 1:nOfFaces
 tau_f = tau(iface);
 nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face
 dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2);
 dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2);
 dline = dxdxiNorm.*IPw_f';
 nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;
%Face matrices
 ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes);

 if iface == FACE
 X_fnodes = Xe([FACE_NODE],:)
 X_fg = N1d*X_fnodes;
 t_Term = analyticalPoisson_N(X_fg);
 t_vect = N1d'*(spdiags(dline,0,ngf,ngf))*t_Term;
 f_n(ind_face,1) = f_n(ind_face,1) + t_vect;
 end

 Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d);
 Alq(ind_face,2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d);
 Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;
 Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f;
 Alu(ind_face,nodes) = Alu(ind_face,nodes) + Auu_f;
 All(ind_face,ind_face) = -Auu_f;
end

% Elemental mapping
Aqu = mu*Auq'; Aul = Alu'; Aql = mu*Alq';
A = [Auu Auq; Aqu -Aqq];
UQ = A\[Aul;Aql];
fUQ= A\[fe;zeros(2*nOfElementNodes,1)];
U = UQ(1:nOfElementNodes,:);
Uf=fUQ(1:nOfElementNodes); % maps lamba into U

Q = UQ(nOfElementNodes+1:end,:);
Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q

Finally, for each element K and f matrices will be

%%ROBIN BOUNDARY
function [Q,U,Qf,Uf,Alq,Alu,All,f_n] =
KKeElementalMatricesIsoParametric_R(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos
_R)
...

%Identify the nodes of the face in the Bounday
FACE = infoFaces.extFace_R(pos_N,2);
FACE_NODE = faceNodes(FACE,:);

...
...

%% Faces computations
Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes);
Auu = zeros(nOfElementNodes,nOfElementNodes);
Alu = zeros(3*nOfFaceNodes,nOfElementNodes);
All = zeros(3*nOfFaceNodes,3*nOfFaceNodes);
%Is it possible to remove this loop?
for iface = 1:nOfFaces
 tau_f = tau(iface);
 nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face
 dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2);
 dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2);
 dline = dxdxiNorm.*IPw_f';
 nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;
 %Face matrices
 ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes);
 Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d);
 Alq(ind_face,2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d);
 Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;
 Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f;
 Alu(ind_face,nodes) = Alu(ind_face,nodes) + Auu_f;
 All(ind_face,ind_face) = -Auu_f;

 %%%Robin modifications
 if iface == FACE
 X_fnodes = Xe([FACE_NODE],:)
 X_fg = N1d*X_fnodes;
 g_Term = analyticalPoisson_R(X_fg);
 g_vect = N1d'*(spdiags(dline,0,ngf,ngf))*g_Term;
 f_n(ind_face,1) = f_n(ind_face,1) + g_vect;

 All(ind_face,ind_face) = All(ind_face,ind_face) -
N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*gamma*(-1/kappa);
 end

end

% Elemental mapping
Aqu = mu*Auq'; Aul = Alu'; Aql = mu*Alq';
A = [Auu Auq; Aqu -Aqq];
UQ = A\[Aul;Aql];
fUQ= A\[fe;zeros(2*nOfElementNodes,1)];
U = UQ(1:nOfElementNodes,:);
Uf=fUQ(1:nOfElementNodes); % maps lamba into U

Q = UQ(nOfElementNodes+1:end,:);
Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q

%Elemental matrices to be assembled
KKe = Alq*Qe + Alu*Ue + All;
ffe = - f_n -(Alq*Qfe + Alu*Ufe);

5. Problem solution

Once the code is implemented, defined meshes “mesh4”, with 512 triangular elements, “mesh2”
with 32 triangular elements and “mesh1” with 8 triangular elements will be used to solve the
problem. All of them twice, with polynomial approximation of degree 2 (6 nodes per element) and
4 (12 nodes per element) to reach first general conclusions about the obtained solutions 𝑢 and û.

CASE 1: mesh4_P2 & P4

CASE 2: mesh2_P2

Figure 2. HDG 	𝑢∗ solution P2 mesh 4 Figure 1. HDG 	𝑢 solution P2 mesh 4

Figure 4. HDG 	𝑢∗ solution P4 mesh 4 Figure 3. HDG 	𝑢 solution P4 mesh 4

Figure 5. HDG 	𝑢 solution P2 mesh 2 Figure 6. HDG 	𝑢∗ solution P2 mesh 2

CASE 3: mesh1_P2

Looking to the previous results, some points can be highlighted. First, in general, see how the
solution that is more affected by the polynomial interpolation is 𝑢, in which the obtained plot for
mainly in mesh 1, radically changes.
As the results were so similar for high order integration polynomials, just for mesh 4, P2 and P4 are
shown. The differences are very small being able to just appreciate smooth changes in the plot
colour in some areas of the mesh.

6. Convergence study

Once the convergence plot is that, it is check that some small code implementation has been done
along the code. Working with mesh 4, the error almost be the same as the polynomial degree
approximation increases (having a value of lower than e00), not happening the expected results, that
as the polynomial degree goes larger, the error decreases strikingly. Same happens with the other
meshes, being the error differences for 𝑝 = 2, 3, 4 almost the same, decreasing as p goes larger but
in such a smooth way.

The code has been revised several times in order to find the mistake, but I can’t find it. Probably it
comes from the t and g sources, as the K and f matrices implementation has been commented with
other colleges and it is done in a similar way. So that, probably the plots aspect should be exactly
correct either.

Figure 7. HDG 	𝑢 solution P2 mesh 1 Figure 8. HDG 	𝑢∗ solution P2 mesh 1

