Finite Elements for Fluids
 Assignment - HDG (\#1)

Author: Cristina Garcia Albela
MsC in Computational Mechanics

1. Problem statement

Consider the domain $\Omega=[0,1]^{2}$ such that $\partial \Omega=\Gamma_{D} \cup \Gamma_{N} \cup \Gamma_{R}$ with $\Gamma_{D} \cap \Gamma_{R}=\emptyset, \Gamma_{D} \cap \Gamma_{N}=\emptyset$ and $\Gamma_{N} \cap \Gamma_{R}=\emptyset$. More precisely, set

$$
\begin{aligned}
& \Gamma_{N}:=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}, \\
& \Gamma_{R}:=\left\{(x, y) \in \mathbb{R}^{2}: y=1\right\}, \\
& \Gamma_{N}:=\partial \Omega \backslash\left(\Gamma_{N} \cup \Gamma_{R}\right)
\end{aligned}
$$

The following second -order linear scalar partial differential equation is defined

$$
\begin{cases}-\nabla \cdot(\kappa \nabla u)=s & \text { in } \Omega \\ u=u_{D} & \text { on } \Gamma_{D} \\ \boldsymbol{n} \cdot(\kappa \nabla u)=t & \text { on } \Gamma_{N} \\ \boldsymbol{n} \cdot(\kappa \nabla u)+\gamma u=g & \text { on } \Gamma_{R}\end{cases}
$$

Where κ and γ are de diffusion and convection coefficients respectively, \boldsymbol{n} is the outward unit normal vector to the boundary, s is the volumetric source term and u_{D}, t and g are the Dirichlet, Neumann and Robin data imposed on the corresponding portions of the boundary $\partial \Omega$.

An equivalent strong form of the $2^{n i d}$ order elliptic equations problem can be written in the broken computational domain as

$$
\left\{\begin{array}{lr}
-\nabla \cdot(\kappa \nabla u)=s \quad \text { in } \Omega_{i}, \text { for } i=1,2 \ldots ., n_{-} e l \\
u=u_{D} & \text { on } \Gamma_{D} \\
\boldsymbol{n} \cdot(\kappa \nabla u)=t & \text { on } \Gamma_{N} \\
\boldsymbol{n} \cdot(\kappa \nabla u)+\gamma u=g & \text { on } \Gamma_{R} \\
\llbracket u \boldsymbol{n} \rrbracket=\mathbf{0} & \text { on } \Gamma \\
\llbracket \boldsymbol{n} \cdot \kappa \nabla u \rrbracket=0 & \text { on } \Gamma
\end{array}\right.
$$

where the two last equations represent the imposition of continuity of u and the normal fluxes along the internal interfaces between the elements.

Finally, the strong form is written in mixed form, as a system of first order equations over the broken domain

$$
\left\{\begin{array}{cc}
\nabla \cdot \boldsymbol{q}=s & \text { in } \Omega_{i} \\
\boldsymbol{q}+\nabla u=\mathbf{0} & \text { in } \Omega_{i} \\
u=u_{D} & \text { on } \Gamma_{D} \\
\boldsymbol{n} \cdot q=-t & \text { on } \Gamma_{N} \\
\boldsymbol{n} \cdot \boldsymbol{q}-\gamma u=-g & \text { on } \Gamma_{R} \\
\llbracket u \boldsymbol{n} \rrbracket=\mathbf{0} & \text { on } \Gamma \\
\llbracket \boldsymbol{n} \cdot \mathbf{q} \rrbracket=0 & \text { on } \Gamma
\end{array}\right.
$$

2. HDG strong and weak forms

2.1 Strong form

Working with HDG the problem should be rewrite as two equivalent problems, a local element-by-element problem in which \hat{u} hat is introduced and a second global problem in which \hat{u} is determined.

Starting with the local problem, the strong form of the problem can be written as

$$
\left\{\begin{array}{lr}
\nabla \cdot \boldsymbol{q}_{\boldsymbol{i}}=s & \text { in } \Omega_{i} \\
\boldsymbol{q}+\nabla u_{i}=\mathbf{0} & \text { in } \Omega_{i} \\
u_{i}=u_{D} & \text { on } \partial \Omega_{i} \cap \Gamma_{D} \\
u_{i}=\widehat{u} & \text { on } \partial \Omega_{i} \backslash \partial \Omega
\end{array} \quad \text { for } i=1, \ldots n_{e l}\right.
$$

From it, an element-by-element solution for q_{i} and u_{i} is obtained as a function of the unknown \hat{u}.
Then, the global problem is defined to determine \hat{u}, that corresponds to the imposition of the transmission conditions

$$
\left\{\begin{array}{lr}
\llbracket u \boldsymbol{n} \rrbracket=\mathbf{0} & \text { on } \Gamma \\
\llbracket \boldsymbol{n} \cdot \mathbf{q} \rrbracket=0 & \text { on } \Gamma \\
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}=-t & \text { on } \partial \Omega_{i} \cap \Gamma_{N} \\
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}-\gamma u_{i}=-g & \text { on } \partial \Omega_{i} \cap \Gamma_{R}
\end{array}\right.
$$

As $u=\hat{u}$ on Γ is imposed by the local problem, the continuity of the primal variable $\llbracket \hat{u} \boldsymbol{n} \rrbracket=\mathbf{0}$ is automatically imposed because \hat{u} is unique for adjacent elements, so that the transmission conditions can be rewritten just as

$$
\left\{\begin{array}{lr}
\llbracket \boldsymbol{n} \cdot \mathbf{q} \rrbracket=0 & \text { on } \Gamma \\
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}=-t & \text { on } \partial \Omega_{i} \cap \Gamma_{N} \\
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}-\gamma \hat{u}=-g & \text { on } \partial \Omega_{i} \cap \Gamma_{R}
\end{array}\right.
$$

2.2 Weak forms

Starting with the local problem, the weak formulation for each of the elements can are calculated, introducing the weighted functions v and \boldsymbol{w}.

- \quad First equation $\left(\nabla \cdot \boldsymbol{q}_{\boldsymbol{i}}=s\right)$

$$
\begin{gathered}
\left(v,\left(\nabla \cdot \boldsymbol{q}_{\boldsymbol{i}}\right)\right)_{\Omega_{i}}=(v, s)_{\Omega_{i}} \\
\text { applying divergence theorem }\left(\nabla \cdot\left(v \boldsymbol{q}_{\boldsymbol{i}}\right)\right)_{\Omega_{i}}=\left(v\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{i}}\right)\right)_{\boldsymbol{\partial} \Omega_{i}} \\
=\left(\boldsymbol{\nabla} v \cdot \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}+\left(v \cdot \nabla \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}} \\
-\left(\boldsymbol{\nabla} v \cdot \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}+\left\langle v,\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{i}}\right)\right\rangle_{\boldsymbol{\partial} \Omega_{i}}=(v, s)_{\Omega_{i}}
\end{gathered}
$$

- \quad Second equation $\left(\boldsymbol{q}+\nabla u_{i}=\mathbf{0}\right)$

$$
\begin{gathered}
\left(\boldsymbol{w}, \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}+\left(\boldsymbol{w}, \nabla u_{i}\right)_{\Omega_{i}}=\mathbf{0} \\
\text { applying divergence theorem }\left(\nabla \cdot\left(\boldsymbol{w} u_{i}\right)\right)_{\Omega_{i}}=\left(\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{w}\right) u_{i}\right)_{\boldsymbol{\partial} \Omega_{i}} \\
=\left((\boldsymbol{\nabla} \cdot \boldsymbol{w}) u_{i}\right)_{\Omega_{i}}+\left(\boldsymbol{w}, \nabla u_{i}\right)_{\Omega_{i}} \\
\left(\boldsymbol{w}, \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}-\left((\boldsymbol{\nabla} \cdot \boldsymbol{w}), u_{i}\right)_{\Omega_{i}}=-\left\langle\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{w}\right) u_{D}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \cap \Gamma_{D}}-\left\langle\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{w}\right) \hat{u}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \Gamma_{D}}
\end{gathered}
$$

Introducing the numerical traces of the fluxes, that are defined element-by-element as

$$
\boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{i}}:=\left\{\begin{array}{lr}
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}+\tau_{i}\left(u_{i}-u_{D}\right) & \text { on } \partial \Omega_{i} \cap \Gamma_{D} \\
\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}+\tau_{i}\left(u_{i}-\widehat{u}\right) & \text { on } \partial \Omega_{i} \cap \Gamma
\end{array}\right.
$$

The weak formulation for each element can be written defined finally as, given u_{D} on Γ_{D} and \hat{u} on $\Gamma \cup \Gamma_{N}$ and on $\Gamma \cup \Gamma_{R}$, find $\left(\boldsymbol{q}_{\boldsymbol{i}}, u_{i}\right)$ that satisfies

$$
\begin{gathered}
-\left(\boldsymbol{\nabla} v \cdot \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}+\left\langle v,\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}\right)\right\rangle_{\boldsymbol{\partial} \Omega_{i}}+\left\langle v, \tau_{i} u_{i}\right\rangle_{\partial \Omega_{i}}=(v, s)_{\Omega_{i}}+\left\langle v, \tau_{i} u_{i}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \cap \Gamma_{D}}+\left\langle v, \tau_{i} \hat{u}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \mid \Gamma_{D}} \\
-\left(\boldsymbol{w}, \boldsymbol{q}_{\boldsymbol{i}}\right)_{\Omega_{i}}+\left((\boldsymbol{\nabla} \cdot \boldsymbol{w}), u_{i}\right)_{\Omega_{i}}=\left\langle\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{w}\right) u_{D}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \cap \Gamma_{D}}+\left\langle\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{w}\right) \widehat{u}\right\rangle_{\left.\boldsymbol{\partial} \Omega_{i}\right\rangle \Gamma_{D}}
\end{gathered}
$$

For the global problem, being the weighted function μ, the weak form is defined as find \hat{u} for all μ such that

$$
\sum_{i=1}^{n_{e l}}\left\langle\mu, \boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{i}}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \partial \Omega}+\sum_{i=1}^{n_{e l}}\left\langle\mu,\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{i}}+t\right)\right\rangle_{\boldsymbol{\partial} \Omega_{i} \cap \Gamma_{N}}+\sum_{i=1}^{n_{e l}}\left\langle\mu,\left(\boldsymbol{n}_{\boldsymbol{i}} \cdot \widehat{\boldsymbol{q}}_{\boldsymbol{t}}-\gamma \hat{u}+g\right)\right\rangle_{\boldsymbol{\partial} \Omega_{i} \cap \Gamma_{N}}=0
$$

Applying the numerical traces of the fluxes

$$
\begin{gathered}
\sum_{i=1}^{n_{e l}}\left(\left\langle\mu, \tau_{i} u_{i}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \Gamma_{D}}+\left\langle\mu, \boldsymbol{n}_{\boldsymbol{i}} \cdot \boldsymbol{q}_{\boldsymbol{i}}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \Gamma_{D}}-\left\langle\mu, \tau_{i} \hat{u}\right\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \Gamma_{D}}-\langle\mu, \gamma \hat{u}\rangle_{\boldsymbol{\partial} \Omega_{i} \backslash \Gamma_{R}}\right) \\
=-\sum_{i=1}^{n_{e l}}\left(\langle\mu, t\rangle_{\partial \Omega_{i} \cap \Gamma_{N}}+\langle\mu, g\rangle_{\partial \Omega_{i} \cap \Gamma_{R}}\right)
\end{gathered}
$$

3. Analytical expressions

Previously to the implementation the analytical expressions for the terms u_{D}, t and g should be derived as they are going to be added to be part of the new calculation that the code news passing from just Dirichlet conditions to the actual problem description with Neumann and Robin.
Having the definition of $u(x, y)$ as following, Matlab tools for derivatives will be use in order to achieve the final expressions.

$$
u(x, y)=\exp (\kappa \sin (a x+b y)+\gamma \cos (c x+d y))
$$

Dirichlet boundary

For Dirichlet boundary value u_{D} no mathematical modifications of the previous equation are needed. The point will be in apply $u(x, y)$ definition in just those points that are part of Γ_{D} (see in the following section how the different boundaries are recognised)

```
function u = analyticalPoisson(X)
% Parameters
mu = 0.1; alpha = 0.3;
a = 5.1; b= -6.2; c = 4.3; d = 3.4;
% Points
x = X (:,1);
y = x(:,2);
% Solution
u = exp(mu*sin(a*x+b*y) + alpha*cos(c*x+d*y));
```


Neumann \& Robin boundaries

To Neumann and Robin boundaries parameters t and g some modifications must be done. Starting with Neumann boundary, looking that it is defined just along $x=0$ it is concluded that the gradient
operator will just affects to the normal direction, so that y -direction. On the other hand, as Robin boundary is defined along $y=1$ the gradient will be applied to the x-direction.
With help of Matlab tools (for derivations), the corresponding functions are easily obtained as (included de source term)

```
% Parameters
k= 0.1; gamma = 0.3; a = 5.1; b= -6.2; c = 4.3; d= 3.4;
% Points
x = X (:, 1);
y = X(:,2);
t=-
exp(conj(k).*sin (conj(b) .*conj(y)+conj(a).*conj(x))+\operatorname{cos}(\operatorname{conj}(\textrm{c}).*\operatorname{conj}(\textrm{x})+\operatorname{conj(d).*conj(y)).*con}
```



```
conj(c).*conj(gamma).*sin(conj(c).*conj(x)+\operatorname{conj(d).*conj(y)));}
g = gamma.*exp(gamma.*cos(c.*x + d.*y) + k.*sin(a.*x + b*y)) +
exp(\operatorname{conj(k).*sin(\operatorname{conj(b).*conj(y) + conj(a).*conj(x)) + cos(conj(c).*conj(x) +}}\mathbf{~}+\operatorname{con}
conj(d).*conj(y)).*conj(gamma)).*conj(k).*(cos(conj(b).*conj(y) +
conj(a).*conj(x)).*conj(b).*conj(k) - conj(d) .*conj(gamma).*sin(conj(c).*conj(x) +
conj(d).*conj(y)));
S =
k.*(exp(gamma.*cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(c.^2.*gamma.*cos(c.*x+d.*y)+a.^2.*k.*sin(a.*
x+b.*y) ) +exp(gamma.* cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(d.^2.*gamma.*cos(c.*x+d.*y)+b.^2.*k.*si
n(a.*x+b.*y)) - exp(gamma.* cos(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(a.*k.*cos(a.*x+b. *y) -
c.*gamma.*sin(c.*x+d.*y)).^2-
exp(gamma.*\operatorname{cos}(c.*x+d.*y)+k.*sin(a.*x+b.*y)).*(b.*k.*\operatorname{cos}(a.*x+b.*y)-
d.*gamma.*sin(c.*x+d.*y)).^2);
```

So that, the expression will be

$$
\begin{gathered}
t=\kappa((\kappa a \cos (a x+b y)-\gamma c \sin (c x+d y)) \exp (\kappa \sin (a x+b y)+\gamma \cos (c x+d y))) \\
g=\kappa((\kappa b \cos (a x+b y)-\gamma d \sin (c x+d y)) \exp (\kappa \sin (a x+b y)+\gamma \cos (c x+d y))) \\
+\gamma \exp (\kappa \sin (a x+b y)+\gamma \cos (c x+d y))
\end{gathered}
$$

4. Matlab code implementation

Once the discrete versions of the previous weak forms are determined, a matrix system of equations can be defined for each, local and global problems.

Starting with the local problem, the following system of equation will be solved at each element

$$
\left[\begin{array}{cc}
\mathbf{A}_{u u} & \mathbf{A}_{u q} \\
\mathbf{A}_{u q}^{T} & \mathbf{A}_{q q}
\end{array}\right]_{i}\left\{\begin{array}{l}
\mathbf{u}_{i} \\
\mathbf{q}_{i}
\end{array}\right\}=\left\{\begin{array}{c}
\mathbf{f}_{u} \\
\mathbf{f}_{q}
\end{array}\right\}_{i}+\left[\begin{array}{c}
\mathbf{A}_{u \hat{u}} \\
\mathbf{A}_{q \hat{u}}
\end{array}\right]_{i} \hat{\mathbf{u}}_{i}
$$

remark the fact that no modifications will be needed in this part with respect to the previous implementation.
Similarity, for the global problem

$$
\sum_{i=1}^{\mathrm{n}_{\mathrm{el}}}\left\{\left[\begin{array}{ll}
\mathbf{A}_{u \hat{u}}^{T} & \left.\mathbf{A}_{q \hat{u}}^{T}\right]_{i}
\end{array}\left\{\begin{array}{l}
\mathbf{u}_{i} \\
\mathbf{q}_{i}
\end{array}\right\}+\left[\mathbf{A}_{\hat{u} \hat{u}}\right]_{i} \hat{\mathbf{u}}_{i}\right\}=\sum_{i=1}^{\mathrm{n}_{\mathrm{el} 1}}\left[\mathbf{f}_{\hat{u}}\right]_{i}\right.
$$

Here, a modification must be done in the $\mathbf{A}_{\hat{u} u \hat{u}}$ component, due to the contribution of Robin boundary condition, as well as in $\mathbf{f}_{\hat{\mathrm{u}}}$ as consequences of t and g fluxes in the Neumann and Robin respectably.

Once the solution of the local problem is obtained, it should be introduced in the global form, that finally becomes

$$
\widehat{\mathbf{K}} \widehat{\mathbf{u}}=\hat{\mathbf{f}}
$$

Where $\widehat{\mathbf{K}}$ and $\hat{\mathbf{f}}$ are defined as

$$
\begin{aligned}
& \left.\hat{\mathbf{f}}={\underset{i=1}{\mathbf{n}_{\mathbf{e l}}}\left[\mathbf{f}_{\hat{u}}\right]_{i}-\left[\begin{array}{ll}
\mathbf{A}_{u \hat{u}}^{T} & \left.\mathbf{A}_{q \hat{u}}^{T}\right]_{i}
\end{array}\right]_{\mathbf{A}_{u u}} \mathbf{A}_{u q}}_{\mathbf{A}_{u q}^{T}} \mathbf{A}_{q q}\right]_{i}^{-1}\left\{\begin{array}{c}
\mathbf{f}_{u} \\
\mathbf{f}_{q}
\end{array}\right\}_{i}
\end{aligned}
$$

4.1 Matlab code. Boundary conditions

Starting from a code that is designed for HDG problems where just Dirichlet boundary conditions are defined, some modifications must be done in order to introduce the new boundary conditions state, where Neumann and Robin BC will take part.
Looking at the boundary domain definition, it is clear in which zones are each of them defined, as well as that no points are shared between any of them. Thus, the first step will be to introduce a modification in the code that allows it to check between the external elements, to which boundary condition they must be placed.
Working on "GetFaces.m" function, the changes are implemented once the faces have been classified as internal or external. For each external face, with help of the connectivity matrix it is check their boundary face belong to Dirichlect, Neumann or Robin boundary.

```
function [intFaces,extFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T)
...
intFaces = intFaces(intFaces(:,1)~=0,:);
extFaces = extFaces(extFaces(:,1)~=0,:);
%%BOUNDARIES
ii = size(extFaces)
in = 1; im = 1; io = 1;
for i = 1:ii
    ele_Faces = extFaces(i,1);
    node1 = T(ele Faces,1);
    node2 = T(ele_Faces,2);
    node3 = T(ele_Faces,3);
    n1_x = X(node1,1);
    n2_x = x(node2,1);
    n3_x = x(node3,1);
    n1_y = x(node1,2);
    n2_y = x(node2,2);
    n3_y = x(node3,2);
    if n1_x == 0 && n2_x == 0
        extFace_N(in,1) = extFaces(i,1);
        extFace_N(in,2) = extFaces(i,2);
        in = in +1;
    elseif n1_x == 0 && n3_x == 0
        extFace_N(in,1) = - extFaces(i,1);
        extFace_N(in,2) = extFaces(i,2);
        in = in +1;
    elseif n3 x == 0 && n2 x == 0
        extFace_N(in,1) = - extFaces(i,1);
        extFace_N(in,2) = extFaces(i,2);
        in = in +1;
    elseif n1_y == 1 && n2_y == 1
        extFace_R(im,1) = extFaces(i,1);
        extFace_R(im,2) = extFaces(i,2);
        im = im + +1;
    elseif n1_y == 1 && n3_y == 1
        extFace_R(im,1) = - extFaces(i,1);
        extFace_R(im,2) = extFaces(i,2);
        im = im +'1;
    elseif n3_y == 1 && n2_y == 1
        extFace_R(im,1) = - extFaces(i,1);
        extFace_R(im,2) = extFaces(i,2);
        im = im +1;
    else
        extFace_D(io,1) = extFaces(i,1);
        extFace_D(io,2) = extFaces(i,2);
        io = io +1;
    end
end
end
```

Once the boundaries are defined, the elements are distribution inside the F matrix must be reorganised, according the code structure in which the Dirichlet Boundaries should occupied the las positions. To do that, some modifications are introduced in "hgd_preprocess.m" function as follows

```
function [F infoFaces] = hdg_preprocess(X,T)
% create infoFaces
[intFaces extFaces,extFace_D,extFace_N,extFace_R] = GetFaces(X,T(:,1:3));
nOfElements = size(T,1);
nOfInteriorFaces = size(intFaces,1);
nOfExteriorFaces = size(extFaces,1);
nOfExteriorFaces N = size(extFace N,1);
nOfExteriorFaces_R = size(extFace_R,1);
nOfExteriorFaces_D = size(extFace_D,1);
F = zeros(nOfElements,3);
for iFace = 1:nOfInteriorFaces
    infoFace = intFaces(iFace,:);
    F(infoFace(1),infoFace(2)) = iFace;
    F(infoFace(3),infoFace(4)) = iFace;
end
for iFace = 1:nOfExteriorFaces_N
    infoFace = extFace_N(iFace,-);
    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces;
end
for iFace = 1:nOfExteriorFaces_R
    infoFace = extFace_R(iFace,:);
    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces +
nOfExteriorFaces_N;
end
for iFace = 1:nOfExteriorFaces_D
    infoFace = extFace D(iFace,:);
    F(infoFace(1),infoFace(2)) = iFace + nOfInteriorFaces +
nOfExteriorFaces_N + nOfExteriorFaces_N;
end
infoFaces.intFaces = intFaces;
infoFaces.extFaces = extFaces;
infoFaces.extFace_D = extFace_D;
infoFaces.extFace_N = extFace_N;
infoFaces.extFace_R = extFace_R;
```

Finally, the last change with respect to this topic will be done in "mainPoissonHDG.m" function, to redefine the dof for Dirichlet and the dof of the unknows according to the new configuration

```
%Dirichlet BC
%Dirichlet face nodal coordinates
nOfFaceNodes = degree+1;
nOfInteriorFaces = size(infoFaces.intFaces,1);
nOfExteriorFaces = size(infoFaces.extFaces,1);
nOfExteriorFaces_B = size(infoFaces.extFaces,1) -
size(infoFaces.extFace_N,1) - size(infoFaces.extFace_R,1);
nOfExteriorFaces_D = sīze(infoFaces.extFace_D,1);
uDirichlet =
computeProjectionFaces(@analyticalPoisson,infoFaces.extFace_D,X,T,referenc
eElement);
dofDirichlet= (nOfInteriorFaces + nOfExteriorFaces_B) *nOfFaceNodes +
(1:nOfExteriorFaces_D*nOfFaceNodes);
%dofUnknown = 1:nOfInteriorFaces*nOfFaceNodes;
dofUnknown = 1:(nOfInteriorFaces + nOfExteriorFaces_B)*nOfFaceNodes ;
```


4.2 Matlab code. Elemental Matrices

Once the external faces have been classified, is time to introduce the appropriate changes in the matrix system components, having in mind the already defined matrix system of equations. It has been decided to introduce three new functions to compute the elemental matrices, one for Neumann boundary element, one for Robin boundary element and the last one for that case in which an element has faces in both boundaries, maintaining the original function as well for the rest.

The new term introduced to Neumann and Robin to $\mathbf{f}_{\hat{u}}$ is defined as " $\mathrm{f} _\mathrm{n}$ " and computed just in the element face that is part of one of the boundaries. In the case of $\mathbf{A}_{\hat{u} \hat{u}}$ parameter modifications, they are introduced just one the element face is part of the Robin boundary

```
%%NEUMAN BOUNDARY
function [Q,U,Qf,Uf,Alq,Alu,All,f_n] =
KKeElementalMatricesIsoParametric_N(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos
_N)
%Identify the nodes of the face in the Bounday
FACE = infoFaces.extFace N(pos N,2);
FACE_NODE = faceNodes(FACE,:);
...
%% Faces computations
Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes);
Auu = zeros(nOfElementNodes,nOfElementNodes);
Alu = zeros(3*nOfFaceNodes,nOfElementNodes);
All = zeros(3*nOfFaceNodes,3*nOfFaceNodes);
%Is it possible to remove this loop?
for iface = 1:nOfFaces
    tau_f = tau(iface);
    nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face
    dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2);
    dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2);
    dline = dxdxiNorm.*IPw_f';
    nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;
%Face matrices
    ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes);
    if iface == FACE
    X_fnodes = Xe([FACE_NODE],:)
    X_fg = N1d*X_fnodes;
    t_Term = analyticalPoisson_N(X_fg);
    t_vect = N1d'*(spdiags(dline,0,ngf,ngf))*t_Term;
    f_n(ind_face,1) = f_n(ind_face,1) + t_vect;
    end
    Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d);
    Alq(ind_face,2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d);
    Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;
    Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f;
    Alu(ind_face,nodes) = Alu(ind_face,nodes) + Auu_f;
    All(ind_face,ind_face) = -Auu_f;
end
% Elemental mapping
Aqu = mu*Auq'; Aul = Alu'; Aql = mu*Alq';
A = [Auu Auq; Aqu -Aqq];
UQ = A\[Aul;Aql];
fuQ= A\[fe;zeros(2*nOfElementNodes,1)];
U = UQ(1:nOfElementNodes,:);
Uf=fUQ(1:nOfElementNodes); % maps lamba into U
Q = UQ(nOfElementNodes+1:end,:);
Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q
```

```
%%ROBIN BOUNDARY
function [Q,U,Qf,Uf,Alq,Alu,All,f_n] =
KKeElementalMatricesIsoParametric_R(mu,Xe,Te,referenceElement,tau,infoFaces,iElem,pos
_R)
%Identify the nodes of the face in the Bounday
FACE = infoFaces.extFace_R(pos_N,2);
FACE_NODE = faceNodes(FACE,:);
...
%% Faces computations
Alq = zeros(3*nOfFaceNodes,2*nOfElementNodes);
Auu = zeros(nOfElementNodes,nOfElementNodes);
Alu = zeros(3*nOfFaceNodes,nOfElementNodes);
All = zeros(3*nOfFaceNodes,3*nOfFaceNodes);
%Is it possible to remove this loop?
for iface = 1:nOfFaces
    tau_f = tau(iface);
    nodes = faceNodes(iface,:); Xf = Xe(nodes,:); % Nodes in the face
    dxdxi = Nx1d*Xf(:,1); dydxi = Nx1d*Xf(:,2);
    dxdxiNorm = sqrt(dxdxi.^2+dydxi.^2);
    dline = dxdxiNorm.*IPw_f';
    nx = dydxi./dxdxiNorm; ny=-dxdxi./dxdxiNorm;
    %Face matrices
    ind_face = (iface-1)*nOfFaceNodes + (1:nOfFaceNodes);
    Alq(ind_face,2*nodes-1) = N1d'*(spdiags(dline.*nx,0,ngf,ngf)*N1d);
    Alq(ind_face, 2*nodes) = N1d'*(spdiags(dline.*ny,0,ngf,ngf)*N1d);
    Auu_f = N1d'*(spdiags(dline,0,ngf,ngf)*N1d)*tau_f;
    Auu(nodes,nodes) = Auu(nodes,nodes) + Auu_f;
    Alu(ind_face,nodes) = Alu(ind_face,nodes) + + Auu_f;
    All(ind_face,ind_face) = -Auu_f;
    %%%Robin modifications
    if iface == FACE
    X_fnodes = Xe([FACE_NODE],:)
    X_fg = N1d*X_fnodes;
    g_Term = analyticalPoisson_R(X_fg);
    g_vect = N1d'*(spdiags(dline,0,ngf,ngf))*g_Term;
    f_n(ind_face,1) = f_n(ind_face,1) + g_vect;
    All(ind_face,ind_face) = All(ind_face,ind_face) -
N1d'*(spdiags(dline,\overline{0},ngf,ngf)*N1d)*gamma*(-1/kappa);
    end
end
% Elemental mapping
Aqu = mu*Auq'; Aul = Alu'; Aql = mu*Alq';
A = [Auu Auq; Aqu -Aqq];
UQ = A\[Aul;Aql];
fUQ=A\[fe;zeros(2*nOfElementNodes,1)];
U = UQ(1:nOfElementNodes,:);
Uf=fUQ(1:nOfElementNodes); % maps lamba into U
Q = UQ(nOfElementNodes+1:end,:);
Qf=fUQ(nOfElementNodes+1:end); % maps lamba into Q
```

Finally, for each element K and f matrices will be

```
%Elemental matrices to be assembled
KKe = Alq*Qe + Alu*Ue + All;
ffe = - f_n -(Alq*Qfe + Alu*Ufe);
```


5. Problem solution

Once the code is implemented, defined meshes "mesh4", with 512 triangular elements, "mesh2" with 32 triangular elements and "mesh1" with 8 triangular elements will be used to solve the problem. All of them twice, with polynomial approximation of degree 2 (6 nodes per element) and 4 (12 nodes per element) to reach first general conclusions about the obtained solutions u and û.

CASE 1: mesh4_P2 \& P4

Figure 1. HDG u solution P2 mesh 4

Figure 3. HDG u solution P4 mesh 4

CASE 2: mesh2_P2

Figure 5. HDG u solution P2 mesh 2

Figure 2. HDG u^{*} solution P2 mesh 4

Figure 4. HDG u^{*} solution P4 mesh 4

Figure 6. HDG u^{*} solution P2 mesh 2

CASE 3: mesh1_P2

Looking to the previous results, some points can be highlighted. First, in general, see how the solution that is more affected by the polynomial interpolation is u, in which the obtained plot for mainly in mesh 1 , radically changes.
As the results were so similar for high order integration polynomials, just for mesh 4, P2 and P4 are shown. The differences are very small being able to just appreciate smooth changes in the plot colour in some areas of the mesh.

6. Convergence study

Once the convergence plot is that, it is check that some small code implementation has been done along the code. Working with mesh 4, the error almost be the same as the polynomial degree approximation increases (having a value of lower than e00), not happening the expected results, that as the polynomial degree goes larger, the error decreases strikingly. Same happens with the other meshes, being the error differences for $p=2,3,4$ almost the same, decreasing as p goes larger but in such a smooth way.

The code has been revised several times in order to find the mistake, but I can't find it. Probably it comes from the t and g sources, as the K and f matrices implementation has been commented with other colleges and it is done in a similar way. So that, probably the plots aspect should be exactly correct either.

