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Hybridisable discontinous Galerkin for second-order
eliptic problems

Problem formulation

Consider the domain Ω = [0, 1]2 such that ∂Ω = ΓD∪ΓN ∪ΓR with ΓD∩ΓN = ∅, ΓD∩ΓR = ∅
and ΓN ∩ ΓR = ∅. More precisely, set

ΓN :=
{

(x, y) ∈ R2 : y = 0
}
,

ΓR :=
{

(x, y) ∈ R2 : x = 0
}
,

ΓN := ∂Ω \ (ΓN ∪ ΓR),

The following second-order linear scalar partial differential equation is defined
−∇ · (κ∇u) = s in Ω,

u = uD on ΓD,

n · (κ∇u) = t on ΓN ,

n · (κ∇u) + γu = g on ΓR.

(1)

where κ and γ are the diffusion and convection coefficients, respectively, n is the outward
unit normal vector to the boundary, s is a volumetric source term and uD, t and g are the
Dirichlet, Neumann and Robin data imposed on the corresponding portions of the boundary
∂Ω.

1. Write the HDG formulation of the problem (1). More precisely, derive the
HDG strong and weak forms of the local and global problems. [Hint: the hybrid
variable û needs to be introduced on both on ΓN and ΓR]

We start with the defining the strong form in the broken computational domain as

−∇ · (κ∇u) = s in Ω,

u = uD on ΓD,

n · (κ∇u) = t on ΓN ,

n · (κ∇u) + γu = g on ΓR

JunK = 0 on Γ,

Jn · (κ∇u)K = 0 on Γ,

(2)

where J·K denotes the jump operator. According to the classical formulation of the HDG
the problem formulated in (2) can be solved in two phases. In the first step the problem is
reduced to a local element-by-element formulation, which is denoted as follows
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
∇ · qi = s in Ωi,

qi + (κ∇ui) = 0 in Ωi,

ui = uD on ∂Ωi ∩ ΓD,

ui = û on ∂Ωi \ ΓD.

(3)

As a second step a global problem of the form
JunK = 0 on Γ,

Jn · qK = 0 on Γ,

n · q = −t on ΓN ,

−n · q + γû = g on ΓR.

(4)

has to be solved to find û where q = −(κ∇u). It corresponds to the application of Neumann
and Robin boundary conditions, as well as the transmission conditions. The first equation
is already imposed in the local problem (3), which leads to the simplified form of the global
problem: 

Jn · qK = 0 on Γ,

n · q = −t on ΓN ,

−n · q + γû = g on ΓR.

(5)

Before continuing with the weak forms the following vector spaces are defined:

W(D) =
{
w ∈ [H1(D)]nsd , D ⊂ Ω

}
,

V(D) =
{
v ∈ H1(D), D ⊂ Ω

}
,

M(D) = {µ ∈ L2(S), S ⊂ Γ ∪ ∂Ω} .

In order to get the weak form of the local problem (3), (qi, ui) ∈W(Ωi) × V(Ωi) has to be
found for i = 1, ..., nel, given ud on ΓD and û on Γ ∪ ΓN ∪ ΓR satisfying

−(∇v, qi)Ωi
+ < v,ni · q̂i >∂Ωi

= (v, s)Ωi
,

−(w, qi)Ωi
+ (∇ ·w, ui)Ωi

=< ni ·w, uD >∂Ωi∩ΓD
+ < ni ·w, û >∂Ωi\ΓD

,

for all (w, v) ∈W(Ωi)× V(Ωi). The numerical fluxes q̂i are defined for i = 1, ..., nel as

ni · q̂i :=

{
ni · qi + τi(ui − uD) on ∂Ωi ∩ ΓD,

ni · qi + τi(ui − û) elsewhere.
(6)

With this definition of the numerical fluxes the weak problem now states: for i = 1, ..., nel
find (qi, ui) ∈W(Ωi)× V(Ωi) while

< v, τiui >∂Ωi
−(∇v, qi)Ωi

+ < v,ni · qi >∂Ωi

= (v, s)Ωi
+ < v, τiuD >∂Ω∩ΓD

+ < v, τiû >∂Ωi\ΓD
,

−(w, qi)Ωi
+ (∇ ·w, ui)Ωi

=< ni ·w, uD >∂Ωi∩ΓD
+ < ni ·w, û >∂Ωi\ΓD

,

(7)
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is satisfied for all (w, v) ∈W(Ωi)× V(Ωi).

The weak form of the global problem (5) can be stated as follows: find û ∈M(Γ∪ ΓN ∪ ΓR)
for all µ ∈M(Γ ∪ ΓN ∪ ΓR) such that

nel∑
i=1

< µ,ni ·q̂i >∂Ωi\Γ +
nel∑
i=1

< µ,ni ·q̂i+t >∂Ωi∪ΓN
+

nel∑
i=1

< µ,ni ·q̂i−γû+g >∂Ωi∪ΓR
= 0.

With the given definition of the numerical fluxes the global weak problem is defined as: find
û ∈M(Γ ∪ ΓN ∪ ΓR) for all µ ∈M(Γ ∪ ΓN ∪ ΓR) such that

nel∑
i=1

{
< µ, τiui >∂Ωi\ΓD

+ < µ,ni · qi >∂Ωi\ΓD
− < µ, τiû >∂Ωi\ΓD

− < µ, γû >∂Ωi∩ΓR

}
= −

nel∑
i=1

{< µ, t >∂Ωi∩ΓN
+ < µ, g >∂Ωi∩ΓR

} . (8)

In order to derive the discrete weak forms of the local problem the following discrete spaces
are introduced:

Wh(Ω) =
{
w ∈ [L2(Ω)]nsd ;w|Ωi

∈ [Pk(Ωi)]
nsd∀Ωi

}
⊂W(Ω

Vh(Ω) =
{
v ∈ L2(Ω); v|Ωi

∈ Pk(Ωi)∀Ω
}

⊂ V(Ω),

Mh(S) =
{
µ ∈ L2(S);µ|Γi

∈ Pk(Γi)∀Γi ⊂ S ⊂ Γ ∪ ∂Ω
}

⊂M(S),

where Pk(Ωi) and Pk(Γi) are the spaces of polynomial functions of degree at most k ≥ 1 in
Ωi and Γi respectively.

With these discrete spaces an element-by-element nodal interpolation of the corresponding
variables can be written as

q ≈ qh =
nel∑
i=1

Njqj ∈Wh,

u ≈ uh =
nel∑
i=1

Njuj ∈ Vh,

û ≈ ûh =
nel∑
i=1

N̂jûj ∈Mh(Γ ∪ ΓN ∪ ΓR) or Mh(Γ),

where qj, uj and ûj are nodal values, Nj are polynomial shape functions of order k in each

element, nen is the number of nodes per element, N̂j are polynomial shape functions of order
k in each element face/edge, and nfn is the corresponding number of nodes per face/edge.

Replacing the corresponding variables with the given interpolations and using the definitions
from [1] the weak form of the local problem (7) can be written in matrix form for each element
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Ωi (i.e., for i = 1, ..., nel) as[
Auu Auq

κAT
uq Aqq

]
i

{
ui

qi

}
=

{
fu
κfq

}
i

+

[
Auû

κAqû

]
i

ûi.

Using the interpolation in the same way for the global problem (8) we get the following
system of equations in matrix form:

nel∑
i=1

{
[AT

uûA
T
qû]i

[
ui

qi

]
+ [Aûû]iûi + [Aûû

R]iûi

}
=

nel∑
i=1

{
[fû]i + [fû

R]i
}

(9)

Following the notation from [1] the matrices Aûû
R and fû

R are defined as follows:

Aûû
R = −

∑
∂Ωi∩ΓR

γ

nfip∑
g=1

N̂n(ξfg)N̂T (ξfg)wf
g (10)

fû
R = −

∑
∂Ωi∩ΓR

nfip∑
g=1

N(ξfg)g(x(ξfg))wf
g (11)

Finally, the solution of the local problem (9) is substituted into (11) an can be written as

K̂û = f̂ ,

where

K̂ =
nel

A
i=1

[AT
uûA

T
qû]i

[
Auu Auq

κAT
uq Aqq

]−1

i

[
Auû

κAqû

]
i

+ Aûû]i + [Aûû
R]i

and

f̂ =
nel

A
i=1

[fû]i + [fû
R]i − [AT

uûA
T
qû]i

[
Auu Auq

κAT
uq Aqq

]−1

i

{
fu
κfq

}
i

.

2. Implement in the Matlab code provided in class the corresponding HDG
solver.

For the proper implementation of Neumann and Robin boundary conditions several functions
of the provided code had to be changed. First of all the numbering of the DOF’s in the
main and preproscess file was adapted to consider the new boundary conditions. Also the
definition of exterior faces, that only accounted for Dirichlet boundary conditions so far,
had to be extended for Neumann and Robin accordingly. Furthermore, the assembly of the
matrices was adapted to incorporate the new boundaries.

3. Set κ = 9.4 and γ = 15.9. Consider u(x, y) = sinh ax+ by + c cos γπx with a = 0.6,
b = 0.4 and c = −0.5. Determine the analytical expressions of the data uD, t and
g in Problem (1).
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The following analytical expressions for uD, t, g and for completeness the source term s were
determined with the Matlab tools for symbolic calculus:

uD = sinh (a x+ b y) + c cos (π γ x)

t = −cosh (b y + a x) b k

g = γ (sinh (a x+ b y) + c cos (π γ x))− k (cosh (b y + a x) a− π c sin (π γ x) γ)

s = −k
(
a2 sinh (a x+ b y) + b2 sinh (a x+ b y)− c γ2 π2 cos (π γ x)

)
.

4. Solve Problem (1) using HDG with differnet meshes and polynomial degrees
of approximation. Starting from the plots provided by the Matlab code, discuss
the accuracy of the obtained solution u and of the postprocessed one u∗.

Figure 2 shows the HDG approximation of u and u∗ for a mesh with 2048 elements and a
polynomial degree k = 1. The L2-norm of the error for u is 7.102307e-01 and respectively
7.699715e-03 for the post-processed HDG solution u∗. Even though the chosen mesh is
fine, the error produced by the linear interpolation is relatively high. This inaccuracy is
compensated by the post-processed solution, which can reduce the error by a magnitude of
two.

When coarsening the mesh, but increasing the polynomial degree k by one, a similar picture
emerges. The HDG solution u and the post-processed HDG solution u∗ for 512 elements and
a polynomial degree k = 2 are displayed in Figure 3. The standard HDG solution has an error
of 2.549036e-01 and the post-processed result an error of 5.799141e-03. Again, the standard
approach fails to represent the analytical solution correctly showing several erroneous parts
inside the elements. On the other Hand, the post-processed HDG solution u∗ smoothens the
result and reduces the error by the order of two. When comparing the analytical solution
form Figure 1a with the post-processed HDG solution in Figure 3 differences between the
plots are barely visible.

A further increase of the mesh size and a polynomial degree of k = 3 leads to the results
displayed in Figure 4. The HDG solution produces an error of 7.665966e-01 and the post-
processed HDG solution has an error of 2.847956e-02. Similar to the preceding examples,
the standard HDG shows artificially large deformations in the corner of the elements, that
result in a relatively large error estimate. The post-processed solution is able to smooth and
decrease the error, but can not achieve as good results as the preceding solutions due to mesh
limitations.

5. Compute the errors for u, q and u∗ in the L2-norm defined on the domain
Ω. Perform a convergence study for the primal, u, mixed q and postprocessed,
u∗ variables for a polynomial degree of approximation k = 1, .., 4. Discuss the
obtained numerical results, starting from the theoretical results on the optimal
convergence rates of HDG.

According to literature the optimal convergence rate of HDG for the approximations of uh and
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(a) Analytical solution
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(b) Mesh with element size h = 0.25

Figure 1

(a) HDG solution (b) Postprocessed HDG solution

Figure 2: 2048 elements and polynomial degree k = 1
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(a) HDG solution (b) Postprocessed HDG solution

Figure 3: 512 elements and polynomial degree k = 2

(a) HDG solution (b) Postprocessed HDG solution

Figure 4: 128 elements and polynomial degree k = 3
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Figure 5: Convergence plot

qh (here simply denoted as u and q) is defined as k+1. For the post-processed approximation
u∗ super-convergent behaviour is expected.

Looking at the convergence plot of u and u∗ we can observe that for k = 1 and k = 4 the error
increases for the first mesh refinement. For k = 2 this increase also happens at the second
mesh refinement. This behaviour can be explained by taking a closer look at Figure 1 with the
analytical solution and a mesh representing the second mesh from the convergence study. It
is notable that the wave length of the underlying problem is much smaller than the element
size in the first two meshes. The fast changes in the gradient of the function can not be
represented even for higher polynomial degrees (k = 4) and therefore lead to the given error
estimates. However, for finer meshes the expected convergence behaviour of HDG method is
clearly visible. Both solutions show a similar convergence rate for different polynomial degrees
k, but again the post-processed solution u∗ shows a much smaller error estimate, roughly by
the order of two. These observation coincide with the described theoretical behaviour, at
least for small mesh sizes.
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