
The Exercise  

The Gaussian Hill 

Euler and Adams-Bashforth Schemes: 

In Convection-Diffusion, the stability condition depends on the value of Pe: 

           𝑖𝑓 𝑃𝑒 ≤  √3 ; 𝐶 ≤
𝑃𝑒

3
 

  𝑖𝑓 𝑃𝑒 >  √3 ; 𝐶 ≤
1

𝑃𝑒
 

The implementation of forward Euler method is done. For the first time step a very 

small time step is chosen. Following this Adams Bashforth scheme has also been 

employed. By varying the Peclet number  (Pe) and the Courant number (C), various 

cases has been observed.  

 

 
 Fig 1:  First case, comparison of the solution obtained using the Adams-Bashforth 

method for C=0.1 and Pe=5 ,for which the method behaves well 

 

 

 

 

 

 



 
Fig 2:  Second Case , comparison of the solution obtained using the Adams-Bashforth 

method for C=0.3 and Pe=1, for which the case becomes unstable as C is comparatively 

higher for the Pe=1 

 

 
Fig 3: Third Case,  comparison of the solution obtained using the Adams-Bashforth 

method for C=0.3 and Pe=10 ,  where method behaves well 

 

 



 
Fig 4: Forth case, Comparison of the solution obtained using the Adams-Bashforth 

method for C=1 ad Pe=0.5, where the unstable solution is obtained.  

 

 
Fig 5: Fifth case, Comparison of the solution obtained using the Adams-Bashforth 

method for C=0.1 and Pe=0.5, unstable solution as Pe is low instead of low C.  

 



 
Fig 6: Sixth case, comparison of the solution obtained using the Adam-Bashforth 

method of the C=0.1 and Pe=10, accurate solution as Pe is comparatively higher and C 

is low.  

 

When C is increased, Adams-Basforth method does not behave well. A few more cases 

have been considered for C=3, Pe=1; C=3, Pe=5; C=3, Pe=100; C=4, Pe= 100. For all 

these cases Adams- Basforth method gives unstable solutions as C is  very high; instead 

of values of Pe. 

 

 
Fig 7: Comparison of the solution obtained using the R2,2  for C=3 and Pe=1 with the 

exact solution 

 

 

 



 
Fig 8: Comparison of the solution obtained using the R2,2 for C=3 and Pe=5 with the 

exact solution 

 

 
Fig 9: Comparison of the solution obtained using the R2,2 for C=3 and Pe=100 with the 

exact  solution 

 



 
Fig 10: Comparison of the solution obtained using the R2,2  for C=4 and Pe=100 with the 

exact solution 

 

 

Pade R2,2 Scheme: 

 

For 1: C=3, Pe=1; 2: C=3, Pe=5; 3: C=3, Pe=100; 4: C=4, Pe=100 the behavior of the 

method has been studied. The method behaves well in-comparison to the Adams-

Bashforth Method , at high C values,. It can be observed from the Figs 7,8,9, and 10; 

where for these cases the Adams-Bashforth was unstable for the same Pe, and C values. 

Figs 9 and 10 shows relative errors in amplitude and phase for the fourth-order method. 

R2,2. The  R2,2 scheme gives improved accurate results for later two cases as shown in 

the figs 12 and 14.   

 



 
Fig 11: Comparison of the solution obtained using the R2,2for C=0.1 and Pe=10 with the 

exact  solution    

 

 
Fig 12: Comparison of the solution obtained using the R2,2 for C=1 and Pe=0.5  with the 

exact  solution    

 

 

 



 
Fig 13: Comparison of the solution obtained using the R2,2 for C=0.3 and Pe=10  with 

the exact  solution    

 

 

 
Fig 14: Comparison of the solution obtained using the R2,2 for C=0.3 and Pe=1  with the 

exact  solution  

 

 

 

 

 
 



Adams Bash-forth Scheme:-  
disp('There are four integration schemes available ')  

disp(' [0] = Crank-Nicolson');  

disp(' [1] = R22');  

disp(' [2] = R33');  

disp(' [4] = Adam-Basforth');  

%disp(' [4] = Forward-Euler');  

disp('and five methods to perform spatial discretization')  

disp(' [0] = Galerkin');  

disp(' [1] = Least-Squares');  

disp(' [2] = Streamline-Upwind Petrov-Galerkin (SUPG)');  

disp(' [3] = Galerkin Least-Squares (GLS)');  

disp(' [4] = Sub-Grid Scale (SGS)');  

disp(' ')  

d_temp = input('Choose a method to perform time integration = ');  

d_esp = input('and another one for the spatial discretization = ');  

-------------------------------------  
elseif d_temp == 4  

method = 'Adams-Bashforth ';  

W = 0;  

w = 1;%%%% Start with Euler; Will change to Adams-Basforth in 

Galerkin1  

else  

error('Unavailable time integration scheme')  

end  

 

% Solution  

if d_esp==0 && d_temp==4  

Sol = Galerkin1(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

elseif d_esp == 0 && d_temp~=4  

Sol = Galerkin(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

elseif d_esp == 1  

Sol = ILS(W,w,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

elseif d_esp == 2  

Sol = SUPG(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

elseif d_esp == 3  

Sol = GLS(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

elseif d_esp == 4  

Sol = SGS(W,w,tau,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd,bccd);  

end  

----------------------------------------  
function Sol =Galerkin1(T,s,a,nu,f,K,M,G,xnode,dt,nstep,c,Accd1,bccd1)  

Time step loop:  
 
% Loop to compute the transient solution  

for p=1:nstep  

if p==1 %%%Forward Euler method loop  

aux = dt*(-Kt*c + Mf);  

F = [];  

for i =1:n  

F = [F; s(i)*aux];  

end  

F = [F;bccd*0];  

dc = U\(L\F);  

dc = reshape(dc(1:n*npoin),npoin,n);  

c = c + sum(dc,2);  

Sol = [Sol c];  

s=1.5*s; %%%%w=1.5 for Adam basforth 

else 



 
aux = dt*(-Kt*c+ Mf);  
F = [];  
for i =1:n  
F = [F; s(i)*(aux)+0.5*Kt*dt*Sol(:,p-1)];%%%% for Adam basforth  
end  
F = [F;bccd*0];  
dc = U\(L\F);  
dc = reshape(dc(1:n*npoin),npoin,n);  
c = c + sum(dc,2);  
Sol = [Sol c];  
end 
aux = dt*(-Kt*c+ Mf);  
F = [];  
for i =1:n  
F = [F; s(i)*(aux)+0.5*Kt*dt*Sol(:,p-1)];%%%% for Adam basforth  
end  
F = [F;bccd*0];  
dc = U\(L\F);  
dc = reshape(dc(1:n*npoin),npoin,n);  
c = c + sum(dc,2);  
Sol = [Sol c]; 
end 
 
 


