
Universitat Polytechnica de Catalunya
MSc Computational Mechanics

Spring 2018

Finite Element in Fluids

Assignment

Due 01/06/2018

Alexander Keiser

Contents

1 Transport Problem 2
1.1 Galerkin’s Time (θ = 2/3) and Space Descretization 2
1.2 Implementation of the Galerkin’s Descretization . 4
1.3 Mesh Generation . 5
1.4 Solution Results . 6

2 Stokes Problem 11
2.1 Discretization of The Stokes Equations . 12
2.2 Creation of the Meshes . 13
2.3 Imposition of Boundary Conditions . 14
2.4 Solution Results . 15

3 Coupled Problem 18
3.1 Discretization of the First Equation . 19
3.2 Mesh Generation . 20
3.3 Solution Results . 20

4 APPENDIX 26

1

1 Transport Problem

We will first solve a transport problem to obtain actin filament and monomer densities (F and G)
respectivley. The problem can be modeled by the following domain and coupled system of partial
differential equations below. The filament density is constant at the upper boundary: F(r = 25) =
80µM. No flux boundary conditions are considered for F everywhere else and for G on the boundary.
The problem is considered with a velocity field u(x,y) = 1/1500 (rx,ry) µm/s, where (x,y) are the
points coordinates and r =

√
x2 + y2. The material properties can be seen in figure 2 on page 4.

We will first descretize the above two equations using the Galerkin’s theta method in time and
standard galerkins method in space. This method was chosen for its unconditional stability and
relative ease in implementation.

1.1 Galerkin’s Time (θ = 2/3) and Space Descretization

2

Scanned by CamScanner

1.2 Implementation of the Galerkin’s Descretization

Here we will implement the previously descretized equation. In figure 1 below, a matlab implementation
can be seen below corresponding to the A,B,C matricies descretized on the previous page. Additionally,
the implemented material properties can also be found in figure 2 below.

Figure 1: Implementation of Galerkin’s Time and Space Descretization

Figure 2: Implementation of Relevant Material Properties

These two figures are only a portion of the codes, and an entire copy of the main script can be
found in the Appendix.

For the solution of this problem we will consider a mesh of bi-linear quadrilateral elements. A
sample visualization of this kind of mesh with 3 elements in the theta direction and 3 elements in the
radial direction can be seen at toe top of the next page in figure 3.

4

1.3 Mesh Generation

Figure 3: Sample Mesh of 3 by 3 Bilinear Quadrilateral Elements

This mesh is obviously too coarse and a finer mesh is needed for accurate calculation of the solution,
however, it is a good visualization for this type of mesh which only has value capturing nodes at every
corner. The actual mesh used will consist of 40 elements in the radial direction and 30 in the theta
direction. This mesh can be seen below.

Figure 4: Actual Mesh of 40 Radial and 30 Theta Bilinear Quadrilateral Elements

5

1.4 Solution Results

Here we will now examine the solution results of our implementation. The transient solution results
for the density of the actin filaments in the domain at various time steps during the solution of a
preliminary code test can be found below in figure 5. The time domain was 10 seconds with 50 total
time steps calculated making ∆t=0.2.

Figure 5: Preliminary transient solution at various time steps ∆t=0.2

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 5a: Time Step 1 Figure 5b: Time Step 2

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 5c: Time Step 3 Figure 5d: Time Step 4

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 5e: Time Step 10 Figure 5f: Time Step 50

6

On the previous page in figure 5 we can see the results of the previously described problem. We can
notice the successful implementation of the boundary conditions in Figure 5a as all of the actin filament
density values (F) on the further radial boundary (r=25) at time step 1 are firmly held at 80µM and
stay fixed that way over the entire time domain. We can also notice how the transient solution develops
as time progresses. The density regions closest to the direchlet boundary condition of 80µM increase
more rapidly than other regions due to the global convection velocity field. Additionally, we can notice
that the longer time goes on the less transient movement we see in the plots. In the first four time
steps, the general shape of the final actin density profile is more or less achieved, and for the rest of
the time domain, the solution slowly approaches the final solution. We can also take note of the initial
oscillatory behavior exhibited during the first 4 time steps. This undesirable behavior was most likely
due to the choosing of too large of of a time step, causing instabilities in the beginning of transient
solution of the problem in the region of the actin filament density domain close to the imposition of
the dirichlet boundary condition. We will now see results of the same problem setup but with a more
refined time step and will confirm that this was indeed the cause of the instabilities and oscillations
exhibited in the solution. This can be seen below in figure 6.

Figure 6: Final transient solution at various time steps ∆t=0.02

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 6a: Time Step 1 Figure 6b: Time Step 2

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 6c: Time Step 5 Figure 6d: Time Step 15

7

0

20

40

-5

60

80

0

2422205 181614

0

20

40

-5

60

80

0

2422205 181614

Figure 6e: Time Step 75 Figure 6f: Time Step 500

The above results were computed with 500 time steps over a time domain of 10 seconds producing
the value for time step ∆t=0.02. It is immediately apparent that the troublesome oscillations present
with the higher value of ∆t=0.02 have been removed, and the solution behaves better. Like before, the
actin density regions within the domain that were close to the imposed dirichlet boundary condition
raise more quickly when compared to the other regions that take much longer to develop and approach
the solution. These graphs are behaving as expected and consistently with the theory implying that
this implementation was programmed correctly. A full copy of the main code implementation can be
found in the appendix.

We will now look at the convergence of several radial node values throuought the time domain.
These radial values will be taken along the y summetry line. The first node taken will be node 5, this
node is close to the free radial end of the domain with no dirichlet coundary condition at r=15. This
will help capture the rates of density change and convergence of towards the free end. THe second
node will be taken at node 20, this node is very close to r=20 in the middle of the domain and will
help caprure the behavior of the solution in this region. The final node tracked will be node 35 close to
the imposed dirichlet boundary condition of 80uM and will capture the behavior in that region. The
results of this nodal evolution study can be found below in figure 7.

0 100 200 300 400 500

Step Number

0

10

20

30

40

50

60

70

80

A
c
ti
n

 F
ila

m
e

n
t

D
e

n
s
it
y
 (

u
M

) Node 1

Node 10

Node 20

Node 30

Node 40

Figure 7: Actin Filament Density F Nodal Evolution Study

8

On the previous page we see the previously described nodal evolution study of the Actin filament
density at various points of the domain. The nodes are spaced 10 elements apart in the radial direction
down the center of the domain. Node 1 being at r=15 and node 40 being 1 element away from r=25.
We can notice that initially there is no rise in filament density near radial nodes 1, 10, and 20 however,
there is a sharp increase in Actin density near the imposition of the dirichlet boundary condition at
r=25. This is shown by the immediate violent evolution of node 40 shortly followed by radial node
30. Radial node 20 is the next to move away from zero followed by radial nodes 10 and 1. It is worth
radial node 1 leaves zero last and also takes the longest to begin convergence. Radial node 40 is the
first to shoot away from zero and exhibits signs of convergent behavior first out of the 5 nodes tracked.
Radial nodes 10,20, and 30 behave in the middle ground of these two. This behavior is expected and
is another excellent indication that the implementation is behaving correctly.

We will now examine the results produced about the evolution of the Monomer Density G in the
domain. These results can be found below in figure 8.

Figure 8: Monomer Density G Solution at Various Time Steps ∆t=0.02

-5

0

5 14 16 18 20 22 24

0

5

10

15

0

5

-5

10

15

0

2422205 181614

Figure 8a: Time Step 1 Figure 8b: Time Step 5

0

5

-5

10

15

0

2422205 181614

0

5

-5

10

15

0

2422205 181614

Figure 8c: Time Step 10 Figure 8d: Time Step 15

9

0

5

-5

10

15

0

2422205 181614

0

5

-5

10

15

0

2422205 181614

Figure 8e: Time Step 75 Figure 8f: Time Step 500

Above we have the previously introduced results, the first thing to notice is that the evolution of
the Monomer density first increases near the imposition of the imposed dirichlet boundary on the Actin
filament density. While the region that begins to increase first coincides with the corresponding region
to the actin filament density profile, the nature of the evolution is different. The Monomer density
profile increases much more smoothly.

To support this discussing, on the next page in figure 9 is a nodal evolution study of radial nodes
along the y axis at various intervals. Node one is at r=15 and node 40 is right next to the outer edge
of the radius at r=25. Notice how the slope of the evolution of this outer radius at node 40 is more
gradual than the evolution of node 40 in the Actin filament density development. The rest of the nodes
behave fairly similarly until they begin to converge. All in all this behavior is expected and furthers
the argument that the implementation is correct.

0 100 200 300 400 500

Step Number

0

5

10

15

M
o

n
o

m
e

r
D

e
n

s
it
y
 (

u
M

)

Node 1

Node 10

Node 20

Node 30

Node 40

Figure 9: Monomer Density G Nodal Evolution Study

10

2 Stokes Problem

We will now solve a stokes problem to obtain the velocity and pressure distribution of the fluid sur-
rounding the actin filaments and monomers. The relevant stokes equations can be found below, along
with the prescribed boundary conditions and the domain being taken into consideration. The viscosity
of the fluid is ν=1000 pN·s/µm

11

2.1 Discretization of The Stokes Equations

We will now descretize the stokes equations using a standard Galerkin space descertization scheme.

12

2.2 Creation of the Meshes

For this problem it is necessary to generate 2 seperate meshes. One to capture the pressure solution
and another to capture the velocity solution. We will use a standard mesh of bi-linear quadrilateral
elements to capture pressure behavior. This is the same type of mesh used in the previous problem.
However, for the velocity, we will implement a more accurate mesh of Q2Q1 elements. These elements
have an additional node in the middle of each side of the quadrilateral elements and another node in the
center of the element for a total of 9 nodes per element compared to 4 for the previously used bi-linear
quadrilateral elements. The pressure and xy-velocity meshes generated for this problem consist of 10
elements in the radial direction and 10 in the theta direction. A mesh of 10 by 10 will also be used to
capture velocity field vectors and can be found below in figures 7 and 8 for reference.

Figure 7: Generated Bi-Linear Quadrilateral Pressure Mesh

Figure 8: Generated Q2Q1 Quadratic Velocity Mesh

13

The velocity mesh on the previous page was generated using a code modification of the function
used to generate the simpler Bi-Linear Quadrilateral Mesh. This code expands the 4 node numbering
scheme to the quadratic 9 node numbering scheme using variables related to the spacing of subsequent
radial rows of nodes. The important code modification for the nodal connectivities can be found below
in figure 9.

Figure 9: Code used to Generate Q2Q1 Quadratic Velocity Mesh Connectivities

2.3 Imposition of Boundary Conditions

Before we can solve the stokes problem we must impose the boundary conditions. These boundary
conditions along with their code implementation can be seen below in figure 10.

Figure 10: Code used to impose the boundary conditions

14

2.4 Solution Results

We will now examine the solution generated by the implementation. Results for both the velocity field
and pressure field have been generated and will be analyzed below. We will first examine the results
for the velocity field produced from the mesh of 10 radial and 10 theta elements for a clear initial
visualization of the resulting velocity field. This can be seen below in figure 11.

Figure 11: Solution Vectorized Velocity Field

Above we can see the vectorized results for the velocity output of the stokes solution. We first
notice the vectors at the maximum and minimum radius values flowing in the negative radial direction
as was imposed by the boundary conditions. The longer length of the vectors at r=25 coincide with the
higher magnitude of enforced velocity in the negative radial direction. Additionally, all of the vectors
begin to point away from from the central symmetrical y axis as they approach the central radial value
of 20 and the further away they get from their respective dirichlet boundary conditions are r=15 and
r=25. The physical reasoning behind this is due to the fact that a higher magnitude of negative radial
velocity is imposed at the outer radial boundary of r=25. It is important to point out that this side has
the longer arc length of the two sides with curvature and negative radial velocity dirichlet boundary
conditions imposed. This side also has more fluid flowing per time into the domain than the lower
radial boundary (with shorter arc length and lower magnitude of negative radial velocity) is capable of
moving out of the domain. Due to the necessity of upholding conservation of mass combined with the
previously stated observations of the fluid transport, the excess fluid mass is forced to flow out of the
domain along the straight sides on the left and right hand sides of the figure. This is a good indication
of that the implementation is behaving correctly. Next we will look at the individual y and x velocity
profiles. These can be found on the following page in figures 12 and 13.

15

Figure 12: Y-Direction Velocity Profile

Above is the resultant y directional velocity profile. It is immediately apparent that there is
increasing magnitude of negative radial velocity with increasing radius. This is consistent with the
physical phenomenon previously discussed. However, it is important to note that even though it may
look like a plot of radial velocity, this graph is not an exact representation of it, these values of radial
velocity and y velocity will only coincide along the symmetric line of x=0. It is for this reason we can
see slight z-directional curvature along the horizontal lines separating the elements in the figure. This
y-directional velocity profile has contributions from both radial and theta velocities, and while radially
dominant, the theta has some contribution. We will now take a look at the x- direction velocity profile
in figure 13 below..

Figure 13: X-Direction Velocity Profile

16

On the previous page we see the x directional velocity profile. Once again, the only place the theta
velocity and x velocity are identical is when they are zero along the x=0 symmetry line. Additionally
we can see regions of positive x velocity on the right side of the symmetric line with negative x velocity
on the opposing side. This is a result of the radial velocity along the right boundary having positive
x components while along the left side the x component is negative. Exceptions to this generalization
appear at and close to the radial values where the dirichlet boundary conditions are imposed. On the
left hand side near the imposition of the dirichlet boundary conditions we see positive contribution to
the x velocity. This is a result of the x component of the initially prescribed radial velocity. The same
is true on the opposing side with negative x components of the initially prescribed radial boundary
conditions. We will now take a look at the resultant pressure variations. These can be found below in
figure 14.

Figure 14: 2 Views of the Resultant Pressure Distribution

Above we have results for the pressure distribution from the implemented stokes system. The first
thing worth noting is the presence of the confined flow causing the pressures in the four corners of
the domain to approach zero. Next, we can begin to notice the pressure distributions at and close to
the 2 imposed radial values of dirichlet boundary conditions r=15 and r=25. We can notice from the
right hand graph that at the boundary with the lower magnitude of imposed negative radial velocity
that there is higher pressure when compared to the larger radial boundary. This is consistent with the
expected behavior from bernoullis principle that when considering confined flow, the regions of higher
velocity experience lower pressure when compared to the regions of lower velocity which experience
higher pressure. All of this behavior is consistent with the theory and is an excellent indication that
the implementation is correct.

17

3 Coupled Problem

We will now considered a coupled problem describing the evolution of the actin filament and monomer
densities. The equation describing the evolution of monomers densities G does not involve any con-
vective transport and, therefore, only the fluid around the fibers has to be considered. This fluid is
modelled using the equations of a quasi-steady viscous fluid. Moreover, due to the presence of actin
fibers, the incompressibility constrain is dropped and pressure is neglected. The equations governing
the coupled problem can be written as follows over the same domain considered where ∇ · σm and Tm

are surface forces on the leading edge.

As was the case in the transport problem, the filament density is constant at the upper boundary:
F(r = 25) = 80µM. No flux boundary conditions are considered for F everywhere else and for G on the
boundary. The problem is considered with a velocity field u(x,y) = 1/1500 (rx,ry) µm/s, where (x,y)
are the points coordinates and r =

√
x2 + y2.

18

3.1 Discretization of the First Equation

Here we will discretize the first of the three equations presented in the problem. The other two
have been previously discretized in the first part of this report and will not be repeated as to avoid
redundancy. Below we can find the aforementioned discretization of the first equation.

19

3.2 Mesh Generation

For this problem we will use bilinear quadrilateral elemental meshes for both pressure and velocity.
The meshes used in computation of the solution will have 30 elements in the theta direction and 40
elements in the radial direction. Below in figure 15 we have presented some sample meshes of 5x5 for
the purpose of visualizing the mesh.

Figure 15: Pressure (left) and Velocity (right) Sample Meshes

3.3 Solution Results

Below we can see the some plots of the Actin density during the evolution of the solution at various
time steps. This solution was generated using nested loops to calculate and produce values for F and
G, the full code with commentary can be found in the appendix.

Figure 16: Actin Density Transient solution at various time steps ∆t=0.02

Figure 16a: Time Step 1 Figure 16b: Time Step 2

20

Figure 16c: Time Step 5 Figure 16d: Time Step 15

Figure 16e: Time Step 75 Figure 16f: Time Step 500

The first thing that can be noticed is how extremely similar this solution is to the one previously
obtained in the first transport problem. We can notice the successful imposition of the boundary
conditions in Figure 16a as all of the Actin filament density values (F) on the further radial boundary
(r=25) at time step 1 are once again firmly held at 80 µM and stay fixed that way over the entire time
domain. We can also notice how the transient solution develops as time progresses. The density regions
closest to the dirichlet boundary condition of 80 µM increase more rapidly than other regions due to
the global convection velocity field. To support this discussion, below in figure 17 is the comparison of
the previously seen nodal evolution of F from the Transport problem (left) to that of of the coupled
problem solved in this section of the report (right). These graphs are also virtually identical. The
reasons for these extreme similarities is that essentially the boundary conditions of the equations are
the same with the exception with velocity dirichlet boundary conditions being imposed at the inner
radial and outer radial bounds. However the impact of this is trivial on the transient solution of the
evolution of the Actin Filament Density F.

21

0 100 200 300 400 500

Step Number

0

10

20

30

40

50

60

70

80

A
c
ti
n
 F

ila
m

e
n

t
D

e
n
s
it
y
 (

u
M

) Node 1

Node 10

Node 20

Node 30

Node 40

0 100 200 300 400 500

Step Number

0

20

40

60

80

A
c
ti
n

 F
ila

m
e

n
t

D
e

n
s
it
y
 (

u
M

)

Node 1

Node 10

Node 20

Node 30

Node 40

Figure 17a: Transport Problem F Nodal Evolution Figure 17b: Coupled Problem F Nodal Evolution

We will now take a look at the evolution of Monomer density G over time. Below we once again
have 6 snapshots of the evolution of the field over the time domain.

Figure 18: Monomer Density G Final transient solution at various time steps ∆t=0.02

Figure 18a: Time Step 1 Figure 18b: Time Step 2

Figure 18c: Time Step 5 Figure 18d: Time Step 15

22

Figure 18e: Time Step 75 Figure 18f: Time Step 500

Above we once again have the evolution of the Monomer Density G over the time domain. As was
the case with the solution of G for the transport problem, the first thing to notice is that the evolution
of the Monomer density first increases near the imposition of the imposed dirichlet boundary. While
the region that begins to increase first coincides with the corresponding region of the Actin filament
density profile, the nature of the evolution is much more smooth, additionally we can see that the plot
converges on values of Monomer density g that are lower by a wide margin. To support this claim,
below in figure 18 is the comparison of the previously seen nodal evolution of Monomer Density G
from the Transport problem (left) to that of of the coupled problem solved in this section of the report
(right). It is obvious that the Monomer Density G solution of the coupled problem converges to a
lower value than that of the transport problem. This is most likely due to the much stronger role that
diffusion plays in this problem leading to to the diffusion of density that showed up in the previous
solution.

0 100 200 300 400 500

Step Number

0

5

10

15

M
o

n
o

m
e

r
D

e
n

s
it
y
 (

u
M

)

Node 1

Node 10

Node 20

Node 30

Node 40

0 100 200 300 400 500

Step Number

0

5

10

15

M
o

n
o

m
e

r
D

e
n

s
it
y
 (

u
M

)

Node 1

Node 10

Node 20

Node 30

Node 40

Figure 19a: Transport Problem G Nodal Evolution Figure 19b: Coupled Problem G Nodal Evolution

We will now examine the resultant velocity field arising from the solution of the coupled problem.
This can be seen on the next page in figure 20.

23

-4 -2 0 2 4

15

20

25

Figure 20: Resultant Velocity Field

Above in figure 20 we can see the velocity field resulting from the solution of the coupled problem.
We can notice that this velocity field looks very similar to the one obtained from the previous stokes
solution. This is due to the same dirichlet boundary conditions being applied to the inner and outer
radial bounds. It is important to notice that the theta directional velocity towards the left and right
center of the domain is much less than previously seen in the stokes problem. This is primarily due
to the surface forces on the leading edge as well as the consideration of compressible flow. A possible
physical explanation for this is that since this fluid is now able to compress, the inner radial dirichlet
bound with negative prescribed velocity in the radial direction can move more fluid per unit length
out of the domain than it previously could since it is possible to transport compressed fluid. This
would result in less fluid needing to be transported out of the domain through the straight sides of the
domain.

We will now examine a plot of the resulting y velocity, this can be found below in figure 21.

Figure 21: Y-Velocity Results

24

Above we have the resulting y velocity plot. The first thing we can notice is the successful imposition
of the velocity dirichlet boundary conditions on the inner and outer radial bounds. The inner bound
(r=15) exhibits its prescribed value of ur = −0.15 and the outer bound (r=25) exhibits its prescribed
velocity of ur = −0.3. In general, this solution is fairly similar to to the one previously seen in the
stokes solution, however there are a few areas worth pointing out. The next thing of interest is the
symmetric behavior of both sides of the domain, the y axis velocity values are equivalent to the radial
and theta velocity values along this axis. This is consistent with what is to be expected from a radially
defined domain. Next we want to comment about the unique behaviors exhibited at the corners of the
graph. We can see a small upward spike along the sides of the straight bounds of the domain near the
lower corners. This behavior was not present in the stokes y velocity solution. We see the opposite
effect at the top corners along the sides of the boundary with a slight spike in the negative z direction
close to the corners. This behavior is most likely due to the addition of surface forces along the leading
edge and compressible flow considerations not present in the previous problem. We will now examine
the x velocity results below in figure 22.

Figure 22: X-Velocity Results

Above we have plotted the x component of the resulting velocity vectors. We can see that there is
very little x directional velocity in a large portion of the center of the domain. However as we move
towards the corners of the domain we see much more x directional velocity. This can be attributed to
the prescribed inflow and outflow velocity conditions. On the inflow at the further radial bound (r=25)
we have a higher magnitude of negative radial velocity prescribed. And since this domain is radially
shaped, the corners happen to be the points furthest away from the symmetric axis, and therefore
will have the largest x direction contributions. The prescribed inflow and outflow on the left side of
the domain have positive x contributions leading to the behavior exhibited by this graph on the left
side with high magnitudes in the corners. On the other hand, the right side has negative x velocity
contributions from the same radially prescribed velocities, leading to the negative behavior on that
part of the domain and the negative spikes of x velocity near the respective corners. All of these results
are reasonable and imply that the implementation is behaving correctly.

25

4 APPENDIX

1 %%%
2

3 %THIS PROGRAM SOLVES THREE PROBLEMS RELATED TO ACTINS ROLE IN CELL
MOTILITY

4

5

6 %BY ALEXANDER KEISER
7

8

9 c l c
10 c l e a r a l l
11 c l o s e a l l
12

13

14 di sp (’ 1 f o r Transport Problem ’)
15 di sp (’ 2 f o r Stokes Problem ’)
16 di sp (’ 3 f o r Coupled Problem ’)
17 problem=input (’ Enter Problem Type ’)
18

19 i f problem==1;
20

21 %%
22 %MATERIAL PARAMETERS
23 THETA=2/3; SIGMA_GF=0.5; SIGMA_G=2; SIGMA_F=0.25; D_G=15; D_F=5;
24 %s^−1 %s^−1 %s^−1 %um/ s %um/ s
25 %%
26

27 %GENERATION OF THE MESH
28

29 %NUMBER OF ELEMENTS IN RADIAL DIRECTION
30 N_R = 40 ;
31

32 %NUMBER OF ELEMENTS IN THETA DIRECTION
33 N_THETA = 30 ;
34

35 %CREATE THE MESH
36 [X,T] = createMesh1 (N_R,N_THETA) ;
37

38 %BILINEAR QUADRATIC ELEMENTS
39 elem = 0 ;
40

41 %PLOT THE MESH
42 f i g u r e (25)
43 plotMesh (T,X, elem , ’ k ’) ;
44

45

46 %%%
47

48 %SETS DEGREES OF FREEDOM
49 DEGREES_OF_FREEDOM = s i z e (X, 1) ;
50 ZERO_ARRAY=ze ro s (DEGREES_OF_FREEDOM,1) ;

26

51

52

53 %%%
54

55 %CALCULATION OF GLOBAL CONVECTIVE VELOCITY
56

57 CONVECTIVE_VELOCITY = ve l o c i t y (X) ;
58

59 %%%
60

61 %GENERATION OF INITIAL TIME VECTORS
62

63 F_VECTOR = ze ro s (DEGREES_OF_FREEDOM,1) ;
64 G_VECTOR = ze ro s (DEGREES_OF_FREEDOM,1) ;
65

66

67 %%%
68

69 % FOUR POINT GAUSS QUADRATURE AND SHAPE FUNCTIONS
70

71 ngaus = 4 ;
72 [pospg ,wpg] = Quadrature1 (ngaus) ;
73 [N, Nxi , Neta] = ShapeFunc1 (pospg) ;
74

75 %%%
76

77 % COMPUTATION OF THE MATRICES FROM DESCRETIZATION
78

79 M = CreMassMat1 (X,T, pospg ,wpg ,N, Nxi , Neta) ;
80 C = CreConvMat1 (X,T,CONVECTIVE_VELOCITY, pospg ,wpg ,N, Nxi , Neta) ;
81 K = CreSt i f fMat1 (X,T,CONVECTIVE_VELOCITY, pospg ,wpg ,N, Nxi , Neta) ;
82

83 %%%
84

85 % DEFINITION OF TIME PARAMETERS
86 END_TIME = 10 ;
87 NUMBER_TIME_STEPS = 499 ;
88 DT = END_TIME/NUMBER_TIME_STEPS;
89

90 %%
91

92 %IMPLEMENTATION OF GALERKIN TIME AND SPACE DESCRETIZATION
93

94 A1 = M + THETA∗C∗DT + THETA∗D_F∗K∗DT + THETA∗SIGMA_F∗M∗DT;
95

96 B1 = −C∗DT − D_F∗K∗DT − SIGMA_F∗M∗DT;
97

98 A2 = M + THETA∗D_G∗K∗DT + THETA∗SIGMA_G∗M∗DT;
99

100 B2 = −D_G∗K∗DT − SIGMA_G∗M∗DT;
101

102 C2 = SIGMA_GF∗M∗DT;
103

27

104 F_1 = ZERO_ARRAY;
105

106 F_2 = ZERO_ARRAY;
107

108

109 %%
110

111 %IMPOSITION OF THE BOUNDARY CONDITIONS
112

113 %DEFINE THE RADIUS OF EACH NODE IN THE DOMAIN
114 NODAL_RADIUS = sq r t (X(: , 1) .^2+X(: , 2) .^2) ;
115

116 %FIND THE NODES WITH VALUES TO BE IMPOSED AT RADIUS OF 25
117 DIRICHLET_NODES = f ind (NODAL_RADIUS >= 24 .9999) ;
118

119 %DEFINE THE VALUE OF THE DIRICHLET BC
120 DIRICHLET_VALUE = 80 ;
121

122 %DEFINE THE NUMBER OF NODES TO BE IMPOSED WITH A BC
123 NUMBER_IMPOSITIONS = length (DIRICHLET_NODES) ;
124

125 %CREATE VECTOR WITH NODES AND THEIR RESPECTIVE BD VALUES
126 DIRICHLET_VECTOR = [DIRICHLET_NODES, ones (l ength (DIRICHLET_NODES) ,1) ∗

DIRICHLET_VALUE] ;
127

128 %
%%

129

130 %CALCULATION OF THE SOLUTION
131

132 %INITIALIZE MATRIX TO STORE THE LAGRANGE MULTIPLIERS
133 LAGRANGE = ze ro s (NUMBER_IMPOSITIONS,DEGREES_OF_FREEDOM) ;
134

135 %RECTIFY F VECTOR WITH DIRICHLET BC
136 F_VECTOR(DIRICHLET_VECTOR(: , 1)) = 80 ;
137

138 %APPLY MULTIPLIER VALUES TO THE INITIALIZED LAGRANGE MATRIX
139 LAGRANGE (: ,DIRICHLET_VECTOR(: , 1)) = eye (NUMBER_IMPOSITIONS) ;
140

141 %VECTOR ADDED TO OTHER SIDE OF EQUATION TO BALANCE THE EQUATION
142 BALANCE_LAGRANGE = ze ro s (NUMBER_IMPOSITIONS, 1) ;
143

144 %CREATE GLOBAL MATRIX TO CALCULATE SOLUTION
145 A_GLOBAL = [A1 LAGRANGE’ ; LAGRANGE ze ro s (NUMBER_IMPOSITIONS,

NUMBER_IMPOSITIONS)] ;
146

147 %SOLUTION FOR F AND G EQUATIONS
148 f o r i = 1 :NUMBER_TIME_STEPS
149 B_GLOBAL = [B1∗F_VECTOR(: , i)+F_1; BALANCE_LAGRANGE] ;
150 DELTA_F = A_GLOBAL\B_GLOBAL;
151 F_VECTOR(: , i +1) = DELTA_F(1 :DEGREES_OF_FREEDOM)+F_VECTOR(: , i) ;
152 F_VECTOR(DIRICHLET_VECTOR(: , 1) , i +1) = 80 ;

28

153 BG_GLOBAL = B2∗G_VECTOR(: , i)+F_2+C2∗F_VECTOR(: , i)−THETA∗C2∗DELTA_F(1 :
DEGREES_OF_FREEDOM) ;

154 DELTA_G = A2\BG_GLOBAL;
155 G_VECTOR(: , i +1) = DELTA_G+G_VECTOR(: , i) ;
156 end
157

158 %%
159

160 %POSTPROCESSING
161

162 i f max(F_VECTOR(: ,NUMBER_TIME_STEPS+1))<100 && min (F_VECTOR(: ,
NUMBER_TIME_STEPS+1))>−100

163

164 f i g u r e (1) ; c l f ;
165 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: ,NUMBER_TIME_STEPS+1)) ;
166 s u r f a c e (xx , yy , s o l) ;
167 view ([4 0 , 3 0])
168 ax i s auto
169 g r id on ;
170

171

172

173

174 f i g u r e (3) ; c l f ;
175 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 1)) ;
176 s u r f a c e (xx , yy , s o l) ;
177 view ([7 5 , 1 5])
178 ax i s auto
179 g r id on ;
180 s e t (gca , ’ f o n t s i z e ’ , 20)
181 z l im ([0 9 0])
182 ylim ([1 3 25])
183

184

185 f i g u r e (4) ; c l f ;
186 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 2)) ;
187 s u r f a c e (xx , yy , s o l) ;
188 view ([7 5 , 1 5])
189 ax i s auto
190 g r id on ;
191 s e t (gca , ’ f o n t s i z e ’ , 20)
192 z l im ([0 9 0])
193 ylim ([1 3 25])
194

195

196 f i g u r e (5) ; c l f ;
197 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 5)) ;
198 s u r f a c e (xx , yy , s o l) ;
199 view ([7 5 , 1 5])
200 ax i s auto
201 g r id on ;
202 s e t (gca , ’ f o n t s i z e ’ , 20)
203 z l im ([0 9 0])

29

204 ylim ([1 3 25])
205

206

207 f i g u r e (6) ; c l f ;
208 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 1 5)) ;
209 s u r f a c e (xx , yy , s o l) ;
210 view ([7 5 , 1 5])
211 ax i s auto
212 g r id on ;
213 s e t (gca , ’ f o n t s i z e ’ , 20)
214 z l im ([0 9 0])
215 ylim ([1 3 25])
216

217

218 f i g u r e (7) ; c l f ;
219 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 7 5)) ;
220 s u r f a c e (xx , yy , s o l) ;
221 view ([7 5 , 1 5])
222 ax i s auto
223 g r id on ;
224 s e t (gca , ’ f o n t s i z e ’ , 20)
225 z l im ([0 9 0])
226 ylim ([1 3 25])
227

228

229 f i g u r e (8) ; c l f ;
230 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 5 0 0)) ;
231 s u r f a c e (xx , yy , s o l) ;
232 view ([7 5 , 1 5])
233 ax i s auto
234 g r id on ;
235 s e t (gca , ’ f o n t s i z e ’ , 20)
236 z l im ([0 9 0])
237 ylim ([1 3 25])
238

239

240

241

242 f i g u r e (2) ; c l f ;
243 s e t (gca , ’ FontSize ’ , 12) ;
244 [C, h]= contour (xx , yy , s o l) ;
245 c l a b e l (C, h) ;
246 ax i s auto
247

248

249 f i g u r e (10) ; c l f ;
250 p e l i = moviein (NUMBER_TIME_STEPS+1) ;
251 ax i s auto
252 SOLUTION1=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
253 SOLUTION2=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
254 SOLUTION3=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
255 SOLUTION4=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
256 SOLUTION5=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;

30

257

258 f o r n=1:NUMBER_TIME_STEPS+1
259 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , n)) ;
260 SOLUTION1(n)=s o l (1 , 11) ;
261 SOLUTION2(n)=s o l (10 ,11) ;
262 SOLUTION3(n)=s o l (20 ,11) ;
263 SOLUTION4(n)=s o l (30 ,11) ;
264 SOLUTION5(n)=s o l (40 ,11) ;
265 s u r f (xx , yy , s o l) ;
266 z l im ([0 9 0])
267 ylim ([1 3 25])
268 pause (0 . 0 1)
269 p e l i (: , n) = getframe ;
270 end
271 end
272 TIMESTEPS=1:NUMBER_TIME_STEPS+1
273 p lo t (TIMESTEPS,SOLUTION1, ’ LineWidth ’ , 2)
274 hold on
275 p lo t (TIMESTEPS,SOLUTION2, ’ LineWidth ’ , 2)
276 hold on
277 p lo t (TIMESTEPS,SOLUTION3, ’ LineWidth ’ , 2)
278 hold on
279 p lo t (TIMESTEPS,SOLUTION4, ’ LineWidth ’ , 2)
280 hold on
281 p lo t (TIMESTEPS,SOLUTION5, ’ LineWidth ’ , 2)
282 x l ab e l (’ Step Number ’)
283 y l ab e l (’ Actin Filament Density (uM) ’)
284 l egend (’Node 1 ’ , ’Node 10 ’ , ’Node 20 ’ , ’Node 30 ’ , ’Node 40 ’)
285 s e t (gca , ’ FontSize ’ , 20)
286 xlim ([0 500])
287 pause (0 . 1) ;
288

289

290 f i g u r e (23) ; c l f ;
291 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1)) ;
292 s u r f a c e (xx , yy , s o l) ;
293 view ([7 5 , 1 5])
294 ax i s auto
295 g r id on ;
296 s e t (gca , ’ f o n t s i z e ’ , 20)
297 z l im ([0 1 5])
298 ylim ([1 3 25])
299

300

301 f i g u r e (24) ; c l f ;
302 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 5)) ;
303 s u r f a c e (xx , yy , s o l) ;
304 view ([7 5 , 1 5])
305 ax i s auto
306 g r id on ;
307 s e t (gca , ’ f o n t s i z e ’ , 20)
308 z l im ([0 1 5])
309 ylim ([1 3 25])

31

310

311

312 f i g u r e (25) ; c l f ;
313 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1 0)) ;
314 s u r f a c e (xx , yy , s o l) ;
315 view ([7 5 , 1 5])
316 ax i s auto
317 g r id on ;
318 s e t (gca , ’ f o n t s i z e ’ , 20)
319 z l im ([0 1 5])
320 ylim ([1 3 25])
321

322

323 f i g u r e (26) ; c l f ;
324 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1 5)) ;
325 s u r f a c e (xx , yy , s o l) ;
326 view ([7 5 , 1 5])
327 ax i s auto
328 g r id on ;
329 s e t (gca , ’ f o n t s i z e ’ , 20)
330 z l im ([0 1 5])
331 ylim ([1 3 25])
332

333

334 f i g u r e (27) ; c l f ;
335 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 7 5)) ;
336 s u r f a c e (xx , yy , s o l) ;
337 view ([7 5 , 1 5])
338 ax i s auto
339 g r id on ;
340 s e t (gca , ’ f o n t s i z e ’ , 20)
341 z l im ([0 1 5])
342 ylim ([1 3 25])
343

344

345 f i g u r e (28) ; c l f ;
346 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 5 0 0)) ;
347 s u r f a c e (xx , yy , s o l) ;
348 view ([7 5 , 1 5])
349 ax i s auto
350 g r id on ;
351 s e t (gca , ’ f o n t s i z e ’ , 20)
352 z l im ([0 1 5])
353 ylim ([1 3 25])
354

355 %END G SOLUTION
356 f i g u r e (11) ; c l f ;
357 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: ,NUMBER_TIME_STEPS+1)) ;
358 s u r f a c e (xx , yy , s o l) ;
359 view ([4 0 , 3 0])
360 g r id on ;
361

362 %END G SOLUTION

32

363 f i g u r e (12) ; c l f ;
364 s e t (gca , ’ FontSize ’ , 12) ;
365 [C, h]= contour (xx , yy , s o l) ;
366 c l a b e l (C, h) ;
367

368 %G MOVIE
369 f i g u r e (20) ; c l f ;
370 p e l i = moviein (NUMBER_TIME_STEPS+1) ;
371 SOLUTION1=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
372 SOLUTION2=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
373 SOLUTION3=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
374 SOLUTION4=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
375 SOLUTION5=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
376 f o r n=1:NUMBER_TIME_STEPS+1
377 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , n)) ;
378 SOLUTION1(n)=s o l (1 , 11) ;
379 SOLUTION2(n)=s o l (10 ,11) ;
380 SOLUTION3(n)=s o l (20 ,11) ;
381 SOLUTION4(n)=s o l (30 ,11) ;
382 SOLUTION5(n)=s o l (40 ,11) ;
383 s u r f (xx , yy , s o l) ;
384 z l im ([0 1 5])
385 ylim ([1 3 25])
386 pause (0 . 0001)
387 p e l i (: , n) = getframe ;
388 end
389 TIMESTEPS=1:NUMBER_TIME_STEPS+1
390 f i g u r e (50)
391 p lo t (TIMESTEPS,SOLUTION1, ’ LineWidth ’ , 2)
392 hold on
393 p lo t (TIMESTEPS,SOLUTION2, ’ LineWidth ’ , 2)
394 hold on
395 p lo t (TIMESTEPS,SOLUTION3, ’ LineWidth ’ , 2)
396 hold on
397 p lo t (TIMESTEPS,SOLUTION4, ’ LineWidth ’ , 2)
398 hold on
399 p lo t (TIMESTEPS,SOLUTION5, ’ LineWidth ’ , 2)
400 x l ab e l (’ Step Number ’)
401 y l ab e l (’Monomer Density (uM) ’)
402 l egend (’Node 1 ’ , ’Node 10 ’ , ’Node 20 ’ , ’Node 30 ’ , ’Node 40 ’)
403 ylim ([0 1 5])
404 xlim ([0 500])
405 s e t (gca , ’ FontSize ’ , 20)
406

407

408 %
%%

409 %
%%

410 %
%%

33

411 %
%%

412 %
%%

413

414

415 e l s e i f problem==2;
416

417

418 %%
419

420 c l e a r ; c l o s e a l l ; c l c
421

422

423 %%
424

425 %GENERATING THE MESH
426

427 N_R = 10 ;
428 N_THETA = 10 ;
429 MU=1000
430 [XP,TP] = createMesh2 (N_R,N_THETA) ;
431 [X,T,THETA_VAR] = createMesh_veloc i ty (N_R,N_THETA) ;
432 elem = 0 ;
433

434

435 f i g u r e (109)
436 plotMesh (TP,XP, elem) ;
437

438 f i g u r e (200)
439 plotMesh (T,X, elem , ’ k ’) ;
440

441

442 %%%
443

444

445 %BILINEAR QUADRILATERAL PRESSURE MESH WITH QUADRATIC VELOCITY
446 elemV = 0 ; degreeV = 2 ; degreeP = 1 ;
447 elemP = elemV ;
448 re f e renceElement = SetReferenceElementStokes (elemV , degreeV , elemP , degreeP) ;
449

450 % DESCRETIZATION MATRICIES
451 [K,G, f] = StokesSystem (X,T,XP,TP, re f e renceElement) ;
452 K = MU∗K;
453 [DOF_PRESSURE,DOF_VELOCITY] = s i z e (G) ;
454

455

456 %%
457

458 %CONVERT NUMBER OF ELEMENTS TO NUMBERS OF NODES

34

459 NN_R=2∗N_R+1
460 NN_THETA=2∗N_THETA+1
461

462 %FIND NODES FOR DIRICHLET
463 NODES_Y1=1:(NN_THETA) ;
464 NODES_Y2=(NN_R−1)∗NN_THETA+1:(NN_THETA) ∗(NN_R) ;
465 NODES_Y1=NODES_Y1’ ;
466 NODES_Y2=NODES_Y2’ ;
467

468 %NODES TO BE IMPOSED ON
469 NODES_DIR_BC = [NODES_Y1; NODES_Y2] ;
470

471

472 %NUMBER OF DEGREES OF FREEDOM ON DIRICHLET NODES
473 DIR_DOF = 2∗ l ength (NODES_DIR_BC) ;
474 %CONFINED FLOW
475 con f ined = 1 ;
476

477 %MATRICIES TO IMPOSE DIRICHLET BOUNDARY CONDITIONS
478 C_MATRIX = [2∗NODES_DIR_BC − 1 ; 2∗NODES_DIR_BC] ;
479 C_STEP=reshape (C_MATRIX,DIR_DOF/2 ,2) ;
480 C_BAL =reshape (C_STEP’ ,DIR_DOF, 1) ;
481 A_DIR_MAT = ze ro s (DIR_DOF,DOF_VELOCITY) ;
482 A_DIR_MAT(: ,C_BAL) = eye (DIR_DOF) ;
483

484 %%%
485

486 %IMPOSITION OF THE BOUNDARY CONDITIONS
487

488 BC_THETA1 = 0 ;
489 BC_THETA2 = 0 ;
490 BC_RADIAL1 = −0.15;
491 BC_RADIAL2 = −0.3;
492 VELOCITY_BC_X1 = BC_THETA1∗ s i n (p i/2− THETA_VAR) + BC_RADIAL1∗ cos (p i/2−

THETA_VAR) ;
493 VELOCITY_BC_X2 = BC_THETA2∗ s i n (p i/2−THETA_VAR) + BC_RADIAL2∗ cos (p i/2−

THETA_VAR) ;
494 VELOCITY_BC_Y1 = −BC_THETA1∗ cos (p i/2−THETA_VAR) + BC_RADIAL1∗ s i n (p i/2−

THETA_VAR) ;
495 VELOCITY_BC_Y2 = −BC_THETA2∗ cos (p i/2−THETA_VAR) + BC_RADIAL2∗ s i n (p i/2−

THETA_VAR) ;
496 B_STEP = [VELOCITY_BC_X1’ VELOCITY_BC_Y1’ ; . . .
497 VELOCITY_BC_X2’ VELOCITY_BC_Y2’] ;
498 B_DIR_VEC =reshape (B_STEP’ ,DIR_DOF, 1) ;
499

500 %%
501

502 %GENERATE ENTIRE SYSTEM OF EQUATIONS
503

504 i f con f ined
505 nunkP = DOF_PRESSURE−1;
506 di sp (’ ’)
507 di sp (’ Confined f low . Pres sure on lower l e f t corner i s s e t to zero ’) ;

35

508 G(1 , :) = [] ;
509 e l s e
510 nunkP = DOF_PRESSURE;
511 end
512 Atot = [K A_DIR_MAT’ G’
513 A_DIR_MAT ze ro s (DIR_DOF,DIR_DOF) ze ro s (DIR_DOF, nunkP)
514 G ze ro s (nunkP ,DIR_DOF) ze ro s (nunkP , nunkP)] ;
515 btot = [f ; B_DIR_VEC ; z e ro s (nunkP , 1)] ;
516

517 s o l = Atot\ btot ;
518

519 %%%
520

521 % POSTPROCESS
522

523

524 ve lo = reshape (s o l (1 :DOF_VELOCITY) , 2 , []) ’ ;
525

526 i f con f ined
527 pres = [0 ; s o l (DOF_VELOCITY+DIR_DOF+1:DOF_VELOCITY+DIR_DOF+nunkP)] ;
528 e l s e
529 pres = s o l (DOF_VELOCITY+DIR_DOF+1:DOF_VELOCITY+DIR_DOF+nunkP) ;
530 end
531

532 nPt = s i z e (X, 1) ;
533 f i g u r e (’Name ’ , ’TIGHT ’) ;
534 qu iver (X(1 : nPt , 1) ,X(1 : nPt , 2) , ve l o (1 : nPt , 1) , ve l o (1 : nPt , 2)) ;
535 hold on
536 ax i s equal ; ax i s t i g h t
537

538

539 PlotResu l t s (X,T, ve l o (: , 1) , r e f e renceElement . elemV , re f e renceElement . degreeV)
540

541 PlotResu l t s (X,T, ve l o (: , 2) , r e f e renceElement . elemV , re f e renceElement . degreeV)
542

543 i f degreeP == 0
544 PlotResu l t s (X,T, pres , r e f e renceElement . elemP , re f e renceElement . degreeP)
545 e l s e
546 PlotResu l t s (XP,TP, pres , r e f e renceElement . elemP , re f e renceElement . degreeP

)
547 end
548

549

550 %%%
551 %%%
552 %%%
553 %%%
554 %%%
555 %%%
556

557 e l s e i f problem==3;
558

559

36

560 c l c
561 c l e a r a l l
562 c l o s e a l l
563

564

565 %%
566 %MATERIAL PARAMETERS
567 THETA=2/3; SIGMA_GF=0.5; SIGMA_G=2; SIGMA_F=0.25; D_G=15; D_F=5;
568 %s^−1 %s^−1 %s^−1 %um/ s %um/ s
569

570 mu=1000
571

572 %%
573

574 %GENERATION OF THE MESH
575

576 %NUMBER OF NODES IN RADIAL DIRECTION
577 N_R = 40
578

579 %NUMBER OF NODES IN THETA DIRECTION
580 N_THETA = 30
581

582 elemV = 0 ; degreeV = 1 ; degreeP = 1 ;
583 elemP = elemV ;
584 re f e renceElement = SetReferenceElementStokes (elemV , degreeV , elemP , degreeP) ;
585 Xe_ref = re f e renceElement . Xe_ref ;
586 [X,T,XP,TP,THETA_VAR] = CreateMeshes (N_THETA,N_R, re f e renceElement) ;
587 f i g u r e ()
588 plot_Mesh (T,X, elemV , ’b− ’)
589 f i g u r e ()
590 plot_Mesh (TP,XP, elemV , ’ r− ’)
591

592

593 %%
594

595 %APPLICATION OF THE BOUNDARY CONDITIONS
596

597 %OBTAIN MATRICIES
598 [T_F,T_U] = boundaryMatrices (X,T, elemV , degreeV , Xe_ref)
599 [K_STOKES,G_VECTOR, f] = StokesSystem2 (X,T,XP,TP, re f e renceElement) ;
600 K_STOKES = mu∗K_STOKES;
601 ndofV = s i z e (K_STOKES, 1) ;
602

603 %CONVERT NUMBER OF ELEMENTS TO NUMBERS OF NODES
604 NN_R=N_R+1
605 NN_THETA=N_THETA+1
606

607 %FIND NODES FOR DIRICHLET
608 NODES_Y1=1:(NN_THETA) ;
609 NODES_Y2=(NN_R−1)∗NN_THETA+1:(NN_THETA) ∗(NN_R) ;
610 NODES_Y1=NODES_Y1’ ;
611 NODES_Y2=NODES_Y2’ ;
612

37

613

614 %NODES TO BE IMPOSED ON
615 NODES_DIR_BC = [NODES_Y1; NODES_Y2]
616

617

618 %NUMBER OF DEGREES OF FREEDOM ON DIRICHLET NODES
619 DIR_DOF = 2∗ l ength (NODES_DIR_BC) ;
620

621 %CONFINED FLOW
622 con f ined = 1 ;
623

624 %MATRICIES TO IMPOSE DIRICHLET BOUNDARY CONDITIONS
625 C_MATRIX = [2∗NODES_DIR_BC − 1 ; 2∗NODES_DIR_BC] ;
626 C_STEP=reshape (C_MATRIX,DIR_DOF/2 ,2) ;
627 C_BAL =reshape (C_STEP’ ,DIR_DOF, 1) ;
628 A_DirBC = ze ro s (DIR_DOF, ndofV) ;
629 A_DirBC(: ,C_BAL) = eye (DIR_DOF) ;
630

631 BC_THETA1 = 0 ;
632 BC_THETA2 = 0 ;
633 BC_RADIAL1 = −0.15;
634 BC_RADIAL2 = −0.3;
635 VELOCITY_BC_X1 = BC_THETA1∗ s i n (p i/2− THETA_VAR) + BC_RADIAL1∗ cos (p i/2−

THETA_VAR) ;
636 VELOCITY_BC_X2 = BC_THETA2∗ s i n (p i/2−THETA_VAR) + BC_RADIAL2∗ cos (p i/2−

THETA_VAR) ;
637 VELOCITY_BC_Y1 = −BC_THETA1∗ cos (p i/2−THETA_VAR) + BC_RADIAL1∗ s i n (p i/2−

THETA_VAR) ;
638 VELOCITY_BC_Y2 = −BC_THETA2∗ cos (p i/2−THETA_VAR) + BC_RADIAL2∗ s i n (p i/2−

THETA_VAR) ;
639

640 B_STEP = [VELOCITY_BC_X1’ VELOCITY_BC_Y1’ ; . . .
641 VELOCITY_BC_X2’ VELOCITY_BC_Y2’]
642

643 %RHS BC ENFORCEMENT VECTOR
644 B_DIR_VEC =reshape (B_STEP’ ,DIR_DOF, 1)
645 VELOCITY_DIR = [C_BAL B_DIR_VEC]
646

647

648 %MATRIX FOR BC ENFORCEMENT
649 A_DIR_MAT = K_STOKES + T_U;
650 A_DIR_MAT(VELOCITY_DIR(: , 1) , :) = 0 ;
651 A_DIR_MAT(: ,VELOCITY_DIR(: , 1)) = 0 ;
652 A_DIR_MAT(VELOCITY_DIR(: , 1) ,VELOCITY_DIR(: , 1)) = eye (DIR_DOF) ;
653

654

655

656 %%%
657

658

659 %GAUSS INTEGRATION
660

661 ngaus=4;

38

662

663 [pospg ,wpg] = Quadrature (elemV , ngaus)
664

665 [N, Nxi , Neta] = ShapeFunc (elemV , degreeV , pospg) ;
666

667 %%%
668

669 %GENERATION OF M AND K MATRICIES
670

671 M = CreMassMat (X,T, pospg ,wpg ,N, Nxi , Neta) ;
672

673 K = CreSt i f fMat (X,T, pospg ,wpg ,N, Nxi , Neta) ;
674

675

676 %%%
677

678 % DEFINITION OF TIME PARAMETERS
679 END_TIME = 10 ;
680 NUMBER_TIME_STEPS = 499 ;
681 DT = END_TIME/NUMBER_TIME_STEPS;
682

683 %%%
684

685 %ENFORCING THE BOUNDARY CONDITION FOR F
686 NUMBER_OF_NODES = s i z e (X, 1) ;
687 F_VECTOR = ze ro s (NUMBER_OF_NODES,NUMBER_TIME_STEPS+1) ;
688 DIRICHLET_VALUE = 80 ;
689 F_DIRICHLET = 0 ;
690 f o r i = 1 : s i z e (X, 1)
691 poly = abs (X(i , 1) ^2 + X(i , 2) ^2 − 25^2) ;
692 i f poly <= 10^−6
693 F_DIRICHLET = F_DIRICHLET + 1 ;
694 F_VECTOR(i , :) = DIRICHLET_VALUE;
695 end
696 end
697 nodesD = ((N_THETA+1)∗(N_R+1)−N_THETA: (N_THETA+1)∗(N_R+1)) ’ ;
698 CDIR = [nodesD , z e r o s (l ength (nodesD) ,1)] ;
699 F_DIRICHLET = s i z e (CDIR, 1) ;
700

701 ACCD_F = ze ro s (F_DIRICHLET,NUMBER_OF_NODES) ;
702 ACCD_F(: ,CDIR(: , 1)) = eye (F_DIRICHLET) ;
703 BCCD_F = CDIR(: , 2) ;
704

705 STORE_V(: , 1) = ze ro s (ndofV , 1) ;
706 STORE_V(VELOCITY_DIR(: , 1)) = VELOCITY_DIR(: , 2) ;
707

708

709

710 %%%
711

712 %INITIALIZE G EQUATIONS
713

714 G_VECTOR = ze ro s (NUMBER_OF_NODES,NUMBER_TIME_STEPS+1) ;

39

715 A_G = M + THETA∗D_G∗K∗DT + THETA∗SIGMA_G∗M∗DT;
716 B_G = −D_G∗K∗DT − SIGMA_G∗M∗DT;
717 C_G = SIGMA_GF∗M∗DT;
718 f_G = ze ro s (NUMBER_OF_NODES, 1) ;
719 Atot_G = A_G;
720 [L2 ,U2] = lu (Atot_G) ;
721

722

723 %%%
724

725

726 % TRANSIENT SOLUTION
727 t o l = 10^−6;
728

729

730 f o r n= 1 :NUMBER_TIME_STEPS
731

732

733

734

735

736 %INITIALIZE VELOCITY INCREMENT
737 VELOCITY_INCREMENT = 1 ; FInc = 1 ;
738 i t e r = 0 ;
739 g = F_VECTOR(: , n) ;
740 n=n
741

742

743

744 %RUN LOOP WHILE THE VELOCITY INCREMENT IS GREATER THAN TOLERANCE
745 whi le VELOCITY_INCREMENT>=to l
746 i t e r = i t e r + 1 ;
747

748 %UPDATE F USING NODAL DENSITY MATRIX
749 fu = −T_F∗g (: , i t e r) ;
750

751

752 %RUN LOOP FOR SIZE OF DESCRETIZED KMATRIX
753 f o r i =1: s i z e (K_STOKES, 1)
754

755 %UPDATING BC VALUES FOR LOOP
756 F_UG(i , 1) = fu (i , 1)−K_STOKES(i ,VELOCITY_DIR(: , 1)) ∗B_DIR_VEC;
757

758 end
759

760 %UPDATING F GLOBAL FOR NODAL COORDINATES
761 f o r i = 1 :DIR_DOF
762 F_UG(VELOCITY_DIR(i , 1)) = VELOCITY_DIR(i , 2) ;
763 end
764

765 STORE_V(: , i t e r +1) = A_DIR_MAT\F_UG;
766 VEL_VEC = STORE_V(: , i t e r +1) ;
767

40

768

769 %CREATE THIS ITERATIONS CONVECTION MATRIX
770 VEL_CONV = reshape (VEL_VEC, 2 , []) ’ ;
771 C_MATRIX = CreConvMat (X,T,VEL_CONV, pospg ,wpg ,N, Nxi , Neta) ;
772

773

774 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
775

776

777 %%CALCULATE SOLUTION FOR F
778

779 %A MATRIX RESULTING FROM DESCRETIZATION
780 A_F = M + THETA∗C_MATRIX∗DT + THETA∗D_F∗K∗DT + THETA∗SIGMA_F∗M∗DT;
781

782 %B MATRIX RESULTING FROM DESCRETIZATION
783 B_F = M + (1−THETA)∗(−C_MATRIX∗DT − D_F∗K∗DT − SIGMA_F∗M∗DT) ;
784

785 %F MATRIX RESULTING FROM F DESCRETIZATION
786 F_F = ze ro s (NUMBER_OF_NODES, 1) ;
787

788

789

790 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
791

792

793 % CREATE GLOBAL MATRIX WITH LAGRANGE FOR INNER LOOP
794 A_INNERLOOP_F = [A_F ACCD_F’ ;ACCD_F ze ro s (F_DIRICHLET,F_DIRICHLET)

] ;
795 [L1 ,U1] = lu (A_INNERLOOP_F) ;
796

797 B_INNERLOOP_F = [B_F∗F_VECTOR(: , n)+ F_F; BCCD_F] ;
798

799 LAGRANGE_1 = U1\(L1\B_INNERLOOP_F) ;
800 g (: , i t e r +1) = LAGRANGE_1(1 :NUMBER_OF_NODES) ;
801

802 VELOCITY_INCREMENT = norm(STORE_V(: , i t e r +1)−STORE_V(: , i t e r)) ;
803

804

805

806 end
807

808

809

810 %OVERWRITE C MATRIX USING VELOCITY VECTOR
811 V_STORE_2(: , n) = STORE_V(: , i t e r +1) ;
812 VEL_VEC = V_STORE_2(: , n) ;
813 VEL_CONV = reshape (VEL_VEC, 2 , []) ’ ;
814 C_MATRIX = CreConvMat (X,T,VEL_CONV, pospg ,wpg ,N, Nxi , Neta) ;
815

816

817

818 %RECOMPUTATION OF MATRICIES
819 A_F = M + THETA∗C_MATRIX∗DT + THETA∗D_F∗K∗DT + THETA∗SIGMA_F∗M∗DT;

41

820 B_F = (−C_MATRIX∗DT − D_F∗K∗DT − SIGMA_F∗M∗DT) ;
821 F_F = ze ro s (NUMBER_OF_NODES, 1) ;
822

823

824

825

826

827 % CALCULATION OF SOLUTION AT TIME STEP
828 A_INNERLOOP_F = [A_F ACCD_F’ ;ACCD_F ze ro s (F_DIRICHLET,F_DIRICHLET)] ;
829 [L1 ,U1] = lu (A_INNERLOOP_F) ;
830

831

832 B_INNERLOOP_F = [B_F∗F_VECTOR(: , n)+ F_F; BCCD_F] ;
833 FA = U1\(L1\B_INNERLOOP_F) ;
834

835

836 FB = U1\(L1\B_INNERLOOP_F) ;
837

838 F_VECTOR(: , n+1) = F_VECTOR(: , n) + FB(1 :NUMBER_OF_NODES) ;
839

840

841 %FINAL SOLUTION FOR G AT TIME STEP
842 btot = [B_G∗G_VECTOR(: , n) − THETA∗C_G∗FA(1 :NUMBER_OF_NODES) +

THETA∗C_G∗F_VECTOR(: , n+1) + f_G] ;
843 aux_G = U2\(L2\ btot) ;
844 G_VECTOR(: , n+1) = G_VECTOR(: , n) + aux_G(1 :NUMBER_OF_NODES) ;
845

846 end
847

848

849 %%%
850

851

852 f i g u r e ()
853 nPt = s i z e (X, 1) ;
854 f i g u r e ;
855 qu iver (X(1 : nPt , 1) ,X(1 : nPt , 2) ,VEL_CONV(1 : nPt , 1) ,VEL_CONV(1 : nPt , 2)) ;
856 hold on
857 ax i s equal ; ax i s t i g h t
858

859

860

861 f i g u r e ()
862 PlotResu l t s (X,T,VEL_CONV(: , 1) , r e f e renceElement . elemV , re f e renceElement .

degreeV)
863 f i g u r e ()
864 PlotResu l t s (X,T,VEL_CONV(: , 2) , r e f e renceElement . elemV , re f e renceElement .

degreeV)
865 v = sq r t ((VEL_CONV(: , 1) .^2)+(VEL_CONV(: , 2) .^2)) ;
866 f i g u r e ()
867 PlotResu l t s (X,T, v , r e f e renceElement . elemV , re f e renceElement . degreeV)
868

869

42

870

871

872

873 %%
874

875 %POSTPROCESSING
876

877 i f max(F_VECTOR(: ,NUMBER_TIME_STEPS+1))<100 && min (F_VECTOR(: ,
NUMBER_TIME_STEPS+1))>−100

878

879 f i g u r e () ; c l f ;
880 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: ,NUMBER_TIME_STEPS+1)) ;
881 s u r f a c e (xx , yy , s o l) ;
882 view ([4 0 , 3 0])
883 ax i s auto
884 g r id on ;
885

886

887

888

889 f i g u r e () ; c l f ;
890 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 1)) ;
891 s u r f a c e (xx , yy , s o l) ;
892 view ([7 5 , 1 5])
893 ax i s auto
894 g r id on ;
895 s e t (gca , ’ f o n t s i z e ’ , 20)
896 z l im ([0 9 0])
897 ylim ([1 3 25])
898

899

900 f i g u r e () ; c l f ;
901 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 2)) ;
902 s u r f a c e (xx , yy , s o l) ;
903 view ([7 5 , 1 5])
904 ax i s auto
905 g r id on ;
906 s e t (gca , ’ f o n t s i z e ’ , 20)
907 z l im ([0 9 0])
908 ylim ([1 3 25])
909

910

911 f i g u r e () ; c l f ;
912 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 5)) ;
913 s u r f a c e (xx , yy , s o l) ;
914 view ([7 5 , 1 5])
915 ax i s auto
916 g r id on ;
917 s e t (gca , ’ f o n t s i z e ’ , 20)
918 z l im ([0 9 0])
919 ylim ([1 3 25])
920

921

43

922 f i g u r e () ; c l f ;
923 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 1 5)) ;
924 s u r f a c e (xx , yy , s o l) ;
925 view ([7 5 , 1 5])
926 ax i s auto
927 g r id on ;
928 s e t (gca , ’ f o n t s i z e ’ , 20)
929 z l im ([0 9 0])
930 ylim ([1 3 25])
931

932

933 f i g u r e () ; c l f ;
934 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 7 5)) ;
935 s u r f a c e (xx , yy , s o l) ;
936 view ([7 5 , 1 5])
937 ax i s auto
938 g r id on ;
939 s e t (gca , ’ f o n t s i z e ’ , 20)
940 z l im ([0 9 0])
941 ylim ([1 3 25])
942

943

944 f i g u r e () ; c l f ;
945 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , 5 0 0)) ;
946 s u r f a c e (xx , yy , s o l) ;
947 view ([7 5 , 1 5])
948 ax i s auto
949 g r id on ;
950 s e t (gca , ’ f o n t s i z e ’ , 20)
951 z l im ([0 9 0])
952 ylim ([1 3 25])
953

954

955

956

957 f i g u r e () ; c l f ;
958 s e t (gca , ’ FontSize ’ , 12) ;
959 [C, h]= contour (xx , yy , s o l) ;
960 c l a b e l (C, h) ;
961 ax i s auto
962

963

964 f i g u r e (10) ; c l f ;
965 p e l i = moviein (NUMBER_TIME_STEPS+1) ;
966 ax i s auto
967 SOLUTION1=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
968 SOLUTION2=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
969 SOLUTION3=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
970 SOLUTION4=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
971 SOLUTION5=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
972

973 f o r n=1:NUMBER_TIME_STEPS+1
974 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,F_VECTOR(: , n)) ;

44

975 SOLUTION1(n)=s o l (1 , 11) ;
976 SOLUTION2(n)=s o l (10 ,11) ;
977 SOLUTION3(n)=s o l (20 ,11) ;
978 SOLUTION4(n)=s o l (30 ,11) ;
979 SOLUTION5(n)=s o l (40 ,11) ;
980 s u r f (xx , yy , s o l) ;
981 z l im ([0 9 0])
982 ylim ([1 3 25])
983 pause (0 . 0 1)
984 p e l i (: , n) = getframe ;
985 end
986 end
987 TIMESTEPS=1:NUMBER_TIME_STEPS+1
988 p lo t (TIMESTEPS,SOLUTION1, ’ LineWidth ’ , 2)
989 hold on
990 p lo t (TIMESTEPS,SOLUTION2, ’ LineWidth ’ , 2)
991 hold on
992 p lo t (TIMESTEPS,SOLUTION3, ’ LineWidth ’ , 2)
993 hold on
994 p lo t (TIMESTEPS,SOLUTION4, ’ LineWidth ’ , 2)
995 hold on
996 p lo t (TIMESTEPS,SOLUTION5, ’ LineWidth ’ , 2)
997 x l ab e l (’ Step Number ’)
998 y l ab e l (’ Actin Filament Density (uM) ’)
999 l egend (’Node 1 ’ , ’Node 10 ’ , ’Node 20 ’ , ’Node 30 ’ , ’Node 40 ’)

1000 s e t (gca , ’ FontSize ’ , 20)
1001 xlim ([0 500])
1002 pause (0 . 1) ;
1003

1004

1005 f i g u r e () ; c l f ;
1006 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1)) ;
1007 s u r f a c e (xx , yy , s o l) ;
1008 view ([7 5 , 1 5])
1009 ax i s auto
1010 g r id on ;
1011 s e t (gca , ’ f o n t s i z e ’ , 20)
1012 z l im ([0 1 5])
1013 ylim ([1 3 25])
1014

1015

1016 f i g u r e () ; c l f ;
1017 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 5)) ;
1018 s u r f a c e (xx , yy , s o l) ;
1019 view ([7 5 , 1 5])
1020 ax i s auto
1021 g r id on ;
1022 s e t (gca , ’ f o n t s i z e ’ , 20)
1023 z l im ([0 1 5])
1024 ylim ([1 3 25])
1025

1026

1027 f i g u r e () ; c l f ;

45

1028 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1 0)) ;
1029 s u r f a c e (xx , yy , s o l) ;
1030 view ([7 5 , 1 5])
1031 ax i s auto
1032 g r id on ;
1033 s e t (gca , ’ f o n t s i z e ’ , 20)
1034 z l im ([0 1 5])
1035 ylim ([1 3 25])
1036

1037

1038 f i g u r e () ; c l f ;
1039 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 1 5)) ;
1040 s u r f a c e (xx , yy , s o l) ;
1041 view ([7 5 , 1 5])
1042 ax i s auto
1043 g r id on ;
1044 s e t (gca , ’ f o n t s i z e ’ , 20)
1045 z l im ([0 1 5])
1046 ylim ([1 3 25])
1047

1048

1049 f i g u r e () ; c l f ;
1050 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 7 5)) ;
1051 s u r f a c e (xx , yy , s o l) ;
1052 view ([7 5 , 1 5])
1053 ax i s auto
1054 g r id on ;
1055 s e t (gca , ’ f o n t s i z e ’ , 20)
1056 z l im ([0 1 5])
1057 ylim ([1 3 25])
1058

1059

1060 f i g u r e () ; c l f ;
1061 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , 5 0 0)) ;
1062 s u r f a c e (xx , yy , s o l) ;
1063 view ([7 5 , 1 5])
1064 ax i s auto
1065 g r id on ;
1066 s e t (gca , ’ f o n t s i z e ’ , 20)
1067 z l im ([0 1 5])
1068 ylim ([1 3 25])
1069

1070 %END G SOLUTION
1071 f i g u r e () ; c l f ;
1072 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: ,NUMBER_TIME_STEPS+1)) ;
1073 s u r f a c e (xx , yy , s o l) ;
1074 view ([4 0 , 3 0])
1075 g r id on ;
1076

1077 %END G SOLUTION
1078 f i g u r e () ; c l f ;
1079 s e t (gca , ’ FontSize ’ , 12) ;
1080 [C, h]= contour (xx , yy , s o l) ;

46

1081 c l a b e l (C, h) ;
1082

1083 %G MOVIE
1084 f i g u r e () ; c l f ;
1085 p e l i = moviein (NUMBER_TIME_STEPS+1) ;
1086 SOLUTION1=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
1087 SOLUTION2=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
1088 SOLUTION3=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
1089 SOLUTION4=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
1090 SOLUTION5=ze ro s (1 ,NUMBER_TIME_STEPS+1) ;
1091 f o r n=1:NUMBER_TIME_STEPS+1
1092 [xx , yy , s o l] = MatSol (X,N_THETA,N_R,G_VECTOR(: , n)) ;
1093 SOLUTION1(n)=s o l (1 , 11) ;
1094 SOLUTION2(n)=s o l (10 ,11) ;
1095 SOLUTION3(n)=s o l (20 ,11) ;
1096 SOLUTION4(n)=s o l (30 ,11) ;
1097 SOLUTION5(n)=s o l (40 ,11) ;
1098 s u r f (xx , yy , s o l) ;
1099 z l im ([0 1 5])
1100 ylim ([1 3 25])
1101 pause (0 . 0001)
1102 p e l i (: , n) = getframe ;
1103 end
1104 TIMESTEPS=1:NUMBER_TIME_STEPS+1
1105 f i g u r e (50)
1106 p lo t (TIMESTEPS,SOLUTION1, ’ LineWidth ’ , 2)
1107 hold on
1108 p lo t (TIMESTEPS,SOLUTION2, ’ LineWidth ’ , 2)
1109 hold on
1110 p lo t (TIMESTEPS,SOLUTION3, ’ LineWidth ’ , 2)
1111 hold on
1112 p lo t (TIMESTEPS,SOLUTION4, ’ LineWidth ’ , 2)
1113 hold on
1114 p lo t (TIMESTEPS,SOLUTION5, ’ LineWidth ’ , 2)
1115 x l ab e l (’ Step Number ’)
1116 y l ab e l (’Monomer Density (uM) ’)
1117 l egend (’Node 1 ’ , ’Node 10 ’ , ’Node 20 ’ , ’Node 30 ’ , ’Node 40 ’)
1118 ylim ([0 1 5])
1119 xlim ([0 500])
1120 s e t (gca , ’ FontSize ’ , 20)
1121 %

%%

1122

1123

1124

1125

1126 e l s e
1127 di sp (’ not va l i d s e l e c t i o n , c l o s i n g ’)
1128 e x i t
1129 end
1130 %%%
1131 %%%

47

1132 %%%
1133 %%%
1134 %%%
1135 %%%

48

	Transport Problem
	Galerkin's Time (=2/3) and Space Descretization
	Implementation of the Galerkin's Descretization
	Mesh Generation
	Solution Results

	Stokes Problem
	Discretization of The Stokes Equations
	Creation of the Meshes
	Imposition of Boundary Conditions
	Solution Results

	Coupled Problem
	Discretization of the First Equation
	Mesh Generation
	Solution Results

	APPENDIX

