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Exercise 1

Steady convection-diffusion-reaction equation

{a-Vp—V-(ﬁVp)+ap=s
p=1inly, p=0inT,

a) [, wla-Vp)do— [, wV-(@®Vp)d2 + [, wopd2 = [, wsdn

Integrating by parts:

Jw(a-Vp)d.(2+j VW~(19Vp)d.(2+j wapd.(2=] ws df + +j wh dI’
2 0 0 0 Ty

Let us rewrite as a(w, p) + c(a;w, p) + (w,ap) = (w,s) + (w,h)r, (1) where

a(w,p) = f Vw - (9Vp)d2,c(a;w,p) = f w(a-Vp)d2,(w,op) = f wap df,
0 0
0

(W,S)=f ws d, (w, k), = j wh dr.
0 r

N

Using approximation p(x) ~ p"(x) = 2 P N; (x), receive system of equations with w = ¥; N;(x) :
(a(Ni »N')Qe + c(a; N, »N')Qe +o(N, 'N')Qe)Pj = (Ni,$)ge + (N, Wanenry

The final system of equations takes the view: (C+K+M) p = f where:

C — convection matrix which consists of Cj; = fﬂe N; (a . VNj)d.Q;

K — diffusion matrix which consists of K; = fne VN; - (19V1\6-)d.(2;



M — mass matrix which consist of Mi‘}- =af., N;N; d(2;
f —right hand side vector which consist of elements ;¢ = fﬂe N;isd + + fdmnrN N;h dr.

After discretization in 1D receive:

Pi+1 — Pi-1 9 Pi+1 — 2P + pi—1 _
a o - W2 +op; =S

In 2D:

aN; dN; dN; dN;
41+ = 30 (Sa) G )+ ) 5 ) s
ij

dN; ON;
+ Z Ni(zig) (ax 5 (Zig) T 2y a_; (Zig)) (zig)lwig + Z oNi(zig )N; (2ig ) ) (2ig ) [Wig
ij Y

f£ =Xy Ni(zig)s|)(zig) |wig-

b) Let us consider the problem with following conditions and spatial discretization h=0.2:
a=1,9=0.001,0 =0.001,s =0

a=0.001,9 =0.001,6 =1,s=0

a=19=0001,0=0,s=1

a=1,9=0001,0=1,s=0

i A

Convective term is in the direction X, thus, the velocity vector is taken as a - [%, 0].
Solving the equation with Galerkin method, we will see that for 1, 3 and 4 examples Galerkin solution provides
oscillations while for the 2 example solution is close to exact one.

ro

Fig. 1: Galerkin method, a=1, 9=0.001, 0=0.001, s=0



Fig. 2: Galerkin method, a=0.001, 3=0.001, c=1, s=0

This behavior is observed as in 1, 3 and 4 cases the Peclet number = 100 whilst for the second case Pe=0.1 and
Galerkin method provides stable solution only if Pe < 5. To improve the solution for these three cases, it is

- . h 109 .
necessary to reduce a spatial discretization parameter. As Pe = ;—0 <5 ->h< . which means that for 1, 3
and 4 cases spatial discretization parameter must satisfy to inequality h < 0.01. As it can be seen from the
figure 3, the Galerkin solution for h = To1 close to exact solution just with slight fluctuations. In this case Pe=
4.9505.
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Fig. 3: Galerkin method, a=1, 9=0.001, 6=0.001, s=0, h=1/101



Fig. 4: Galerkin method, a=1, 39=0.001, 0=1, s=0, h=1/101

c) Now let us consider stabilization techniques, SUPG and GLS methods. These methods are unconditionally
-1/2

2
stable. Stabilization parameter is counted as T = i(1 + iz + (ia) ) (2).
2a Pe 2a

As unconditionally stable, these methods provide solutions which are close to exact one for every from four
cases. However, these solutions can have some fluctuations which are caused by Galerkin term ow from
Pw)y=Lw)=a -Vw -V (IVw) + ow.

The qualitative influence of each term of stabilization term P(w) = L(w) = a - Vw — V - (9Vw) + ow for GLS
method where a - Vw corresponds to SUPG method and ow is a Galerkin weighting. For linear elements and a
constant positive reaction, GLS and SUPG with Galerkin weighted 1 + ¢ T times more. This means that the
instabilities introduced by Galerkin are little more amplified in GLS to compare with SUPG. This instability is
overcome in SGS method. As P(w) = —L*(w) = a-Vw + V- (9Vw) — ow, in this case Galerkin term is
weighted by 1 - ¢ T and thus has less influence than SUPG.

The third set of parameters was chosena = 1,9 = 0.001,0 = 0,s = 1. In this case Pe = 100 if h=0.2 which

means that Galerkin method provides unstable solution with oscillations. Also, ¢ = 0 which means that for

SUPG and GLS there are no fluctuations provided by Galerkin term as it is equal to zero. Thus, GLS and SUPG
methods provide solution with high accuracy on given set of parameters.

To use stabilization techniques the equation can be represented in the following view:
R()=a-Vp—V-(WVp) +op—s=L(p)—s

Where R(p) is residual. Then the equation (1) takes the view:

a(w,p) + c(a;w,p) + (w,ap) +Z f PW)TR(p) d2 = (w,s) + (W, h)p, 3)
e e

SUPG method
This stabilization technique is defined by taking P(w) = a - Vw.

The system (3) takes the view:



a(wh, p") + c(a;wh, ph) + (wh,op") + Z f(a -Vwh)t[a- Vph =V - (9Vp") + ap"]|dn
e e
= (Wh,S) + Z f(a-th)Tsd.Q
e e
Here p(x) = p"(x) = 2 PN (x), w(x) ~ wh(x) = 3, N;(x), T is a stabilization parameter which can be
defined by different ways. In the current work the definition (2) is used. Receive the following system of
equations:

a(Ni,N;) . + c(a N, N) o +0(Ni, ) . + f(a-VNl-)T[a-VNj—V-(19V1V]-)+0Nj]d.(2 pj

= (N;,s)ge + f(a - VN;)tsdf]
ae
The derivatives in physical coordinates (x,y) V,, = J71V&n. The modified weights dxdy = |)|d&dn. The vector
N_ig has the value of the shape functions at the current Gauss point z;;. For a bilinear quadrilateral element is
used, Njy = [N1 (zl-g), N, (zl-g ), N3 (zig), N4(zl-g)]. Then, Nl-g’Nl-g is a 4x4 matrix.
This system can be represented as K p = f where where matrix K consists of elements

Ki =a(Ni,N) o + c(@ N, N), o + (N, N) . + f(a-VNi)r[a-vz\g—v-(ﬁvz\g)+azvj]dn

—fﬁaN"aM+aNaN o + fN N o2 d(z+f N;N; 0
= ). "\ ox ax "oy oy i\ By aYay LN

f( aN; azv> aN; N _ 0%N, 92N v lag
+ axax+ay6y Tax8x+ay6y ax2+6y2 + ol
ﬂe

zz( ) G ) + S a) G 0) ) D o

dN; ON;
+ Z Ni(zig) (ax 5 (Zig) T 2y a_; (Zig)) (zig)lwig + Z oNi(zig )Ny (2ig ) ) (2ig ) [Wig
ij Y

dN; ON; ON; ON:
+ Z(axa_xl(zig)"'aya_yl(zig))f axa_x](zig)'i'aya_;(zig)
ij

+19<a Y (zig) to7 N (Zlg)> + ol (zig) |M(zig)|Wig

vector f consists of elements

fif = (Ni,s)ge + f(a - VN;)tsdf2

aN; aN;
< > Ni(zig)s (g ) wig + ) ( - (z) + ay @(z@) 5[} (21 ) [wig
ij ij

The following changes of the code to compare with Galerkin method were made:
1) Matrix K is defined as follow:



Ke = Ke + (Nu*(Nx"*Nx+Ny*"*Ny) + N_ig"*(ax*Nx+ay*Ny) +
sigma*(N_ig"*N_ig) +
tau* (ax*Nx+ay*Ny) " *(ax*Nx+ay*Ny+sigma*N_ig))*dvolu;

. aN; : N,
Where nu* (Nx " *Nx+Ny " *Ny)=3;; 9 <% (zig) a_xj (zig) + % (zig) 6_y] (zl-g)> ,

g @ty W)=y M) (a2 ay) + 2 ) ).
sigma*(N_ig"*N_ig)=Y; oN;(z;,)N;(z;).,

tau* (ax*Nx+ay*Ny) "*(ax*Nx+ay*Ny+sigma*N_ig)=3; (ax % (ziy) +
ayolNidyvzigraxdNjoxzig+ayoNjdyzig+I02Njox2zig+I2Njdy2zig+olNjzig, dvolu =
wgp(ig)*det(Jacob)=|J(z;)|w;,

2) Vector fis defined as follow:
fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))"*(s*dvolu)). WhereN_ig =Y; N;(z;,).,

tau* (ax*Nx+ay*Ny))=2; (ax % (zig) +a, % (zig)> 7, s*dvolu= TS|](Zl-g)|Wig

GLS method

For GLS method P(w) = L(w) = a - Vw — V- (IVw) + ow.

Analogically to the previous method, the system (3) takes the view:
a(wh,ph) + C(a; wh,ph) + (Wh,aph)

+ f(a SVwh — V. (19th) + awh) T[a -Vph —v. (19Vph) + O'ph]d.Q
QE

= (Wh,S) + f(a SVwh —v. (19VWh) + awh) Tsdf
ne

a(N; , N; )ﬂe + c(a N, N, )ne +o(N;, N, )ne

+ f(a-vzvi—v.(ﬁVNi)+aNi)r[a-v1vj — V- (9VN;) + 0N [d | p;

ne

= (Ni,s)ne + f(a . VNL -V. (ﬁVNl) + UNi)TSd.Q
_QE
The system can be rewritten as K p=f where matrix K consists of elements



Ke—a(Nl, J)ﬂe+ c(a; N, })ne+a(Nl, l)ne

+ j(a-VNi — V- (@VN,) + oN)) t[a-VN; = V- (9VN;) + oN; |dQ2
Qe

—f o (2NN ON:ON) dn+f N (a2 4o, 2 d(z+f N;N; 0

= ). "\ ox ax "oy oy o\ By aYay TN

+f oN; 0N, aZNiJraZ +oN, N N 02Nj+621\g
o T gy ax2 gy ) TN T By T B gy, 9x2 | 9y?

ﬂe

+0Nj]d.(2

= (G 5 ) + 5 ) ) Ml

ij

ON; ON;
Y ) (o0 5 ) a—;@g)) o + oy I o) )
ij ij
oN, N, 2N, 32N,
; Z(axa—;@g) +aya—;(zig>+19(W;(zig>+ﬁ;<zig))
ij
dN; dN;
: azvl-(zl-g>) r ( T )+ 0 ) 40 (G )+ S )

toh (Zig)> (zig) Wi
vector f consists of elements

ﬂe = (Nl-,s)ﬂe + f(a . VNL -V (19VNL) + O'Nl')TSd.Q

~ Z Ni(zig)s|)(2ig) Wi
U}

dN; dN; 02N, 92N.
+Z<axa—,;(zig>+aya—;<zig)+19(W;<zig>+ﬁ;(zig>)

g

+ oN; (zl-g)> ts[)(zig )| wig

1) Matrix K is defined as follow:
Ke = Ke + (nu*(Nx"*Nx+Ny"*Ny) + N_ig"*(ax*Nx+ay*Ny) +
sigma*(N_ig"*N_ig) +
tau* (ax*Nx+ay*Ny+sigma*N_ ig)'*(ax*Nx+ay*Ny+sigma*N ig))*dvolu;

Where nu* (Nx " *Nx+Ny **Ny)=3; 9 <ax (z Lg) Zig) +2 (z lg) (Zlg)>

N_ig"*(ax*Nx+ay*Ny)=Y;; N;(z;,) <ax % (ziy) +a, % (zig)> ,

sigma*(N_ig"*N_ig)=Y; oN;(z;;)N;(z;,).,
tau*(ax*Nx+ay*Ny+sigma*N_i1g) " *(ax*Nx+ay*Ny+sigma*N_iQ)
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. . 2y, 2y, :
=2y (ax%(zig) +ay(;_];ll(zig) +19<% Zig) +%(zig)> +0Ni(zig))7(ax%(zig) +

ayoydyzig+I902Njox2zig+02Njdy2zig+olNjzig .-

2) Vector fis defined as follow:
fe = fe + (N_ig+tau*(ax*Nx+ay*Ny+sigma*N_ig) "*(s*dvolu)). WhereN_ig
; _ . aN; aN;
=% Ni(z;5), N_ig+tau*(ax*Nx+ay*Ny+sigma*N_ig)=Y; (ax - (ziy) +a, o (ziy) +

IO2NiOx2zig+F2Nidy2zig+oNizigr, s*dvolu= zsjzigwig

30

Fig. 5: SUPG, a=1, 3=0.001, 0=0, s=1, T = 0.12496

Fig. 6: GLS, a=1, 9=0.001, 0=0, s=1, t = 0.12496

As it clearly seen from figures 7 and 8, GLS and SUPG solutions are completely similar. This happened as ¢ = 0
which means that Galerkin term is equal to zero and there are no fluctuations caused by it.



Now let us consider the problem with the previous set of parameters and new boundary conditions
P =2inF2, p = 1inF4.

Fig. 8: SUPG, a=1, 9=0.001, o=1, s=0, T = 0.12496

Fig. 9: GLS, a=1, 9=0.001, o0=1, s=0, T = 0.12496



As it seen from the figures 9, 10 and 11, with new boundary conditions methods reflect the similar behavior.
Galerkin solution provide whild oscillations as Pe = 100. SUPG and GLS provide solutions with high accuracy
with some fluctuations close to boundary which are caused by Galerkin term.

Now let us consider the case when Neumann boundary conditions are imposed in I'4.

Fig. 12: GLS, a=1, 9=0.001, 0=1, s=0, t = 0.12496

From figures 10, 11 and 12 it seen that as Peclet number is still high (Pe=100), Galerkin solution has noticeable
deviation of SUPG and GLS solutions which are similar and have big accuracy.
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Exercise 2

Let us consider transient convective-diffusion-reaction problem:
pr+a-Vp—V-(Vp)+aop=s
p(x,0) =x(2—x)
p = 1inF2, p = 0iTlF4_
With the vector a(-x,-y).
a) For spatial discretization of the problem was used SUPG method as an unconditionally stable method.
As it was developed in the previous exercise, the spatial part is discretized as following:
For time discretization Crank-Nicolson and Pade methods were chosen.

1. Crank-Nicolson method

Crank-Nikolson is a 8-method with 8 = 1/2. For time t**! = t" + At:

Ap  p(t"™) — p(t™)
At At

=0p,(t"" )+ (1 -0)p,(t") +0 <G - 9) At, At2>

Neglecting last term, receive:

Apl
At 2

n+1 n

SApy =pi,  whereAp =p"T —p

From the convective-diffusion-reaction equation p, = —a - Vp + V- (YVp) — agp + s, putting it to the

previous equation:

Ap 1 1 1, .
A_+ (a V)Ap—EV-(ﬁV)Ap+50Ap—E(s"+ —s")=—-a-Vp"+V-@WVp") —op" +s" -

Ap

1
2w t3 ((a V)-V- (19V)+0)Ap——("+1+s”)+(—a-V+V-(19V)—a)p"

Now let us apply spatial approximation with SUPG method. Receiving a weak form:

( ii)* (w.(@-v)-v- ('9V)+0)Ap)——(w (™ +5™) + W, (~a -V + V- (V) — 0)p")

Integrating by parts and introducing the optimization term:

( i’i) +=(a(w,Ap) + c(a;w,Ap) + (W, 0hp) + Z f(a vw) 7[(a - V)Ap — V- (9V)Ap + oApld2)
ﬂe

=5 (w, (s™+sm) + 5 (W, (h"*1 + h"))rN + (aw, p™) — cl@;w,p™) — (W, ap™))

+ Z f(a-Vw)Tsd.(Z

e e
Where:
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a(w,p) = fﬂ Vw - (9Vp)d2,c(a;w,p) = f w(a-Vp)dQ2,(w,op) = fﬂ waop df,
0

(W,S)=f ws d,(w, k), = f wh dr.
0 r

N

2. R22 method

For R22 method the following scheme is used:

A—'D—WA = wpl
At Pt Pt
1
n+- n
_2 _Jpr-p _1[7 -1 1l
Where Ap, = ot A, bp = {pn+1 _ pn+%}' W= 24 [13 5 ]’ w= 2{1}'

Adding SUPG space discretization, the scheme takes view:

A
(W, A_’t’) — (w,WAp,) + Z(r?(w),ﬂ(p))ne = (w,wp)

Where R(p) = i—‘; —WAp, —wpl and P(w) = W(a - V)w. Puttingp, = —a-Vp + V- (I9Vp) —ap + sinto

the equation, receive:

A
(W, A_’Z) +a(w,Whp) + c(a;w,WAp) + (w,cWAp)

+ 2 f W(a - VY wtW[(a-V)Ap — V- (©V)Ap + cApldf
e ne
= (w, (ws™ + WAs)) + (w, (Wh™ + WAh))rN + (aw,wp™) = c(a;w,wp™) — (W, owp™))

+ z f W(a-V)w tsd
e Qe

5. -c) The number of elements is 20 in each direction, a = 1,9 = 0.001,¢ = 0.001,s = 0,t™ = 0.5. For
initial time we receive the following figure:

Fig 1: Initial time t=0
12



As it can be seen from the Fig 1, initial solution does not satisfy to boundary condition in UT'4. To fix it, we can

use initial solution (2-x)/2.

The mesh with direction of velocity takes the following view:

B
b
Ry b S T T N e A e
R S e e A o o e S I &
: R C IS SRR EEESS
nﬂ..dw? b brfadn b S50 0 L 0 LB O O R OR X
e R

e 4] T T L A e e e = |

m PR D088
n?ﬂ:f\ 0 . A A W \W S e \m \m P

H

i N S i i s i S Nl Sl ol ol R o S N O O
e e o e o
e e s B—e
S S W, ™ i, S S, Sl A Sl W R D O M S )
T T I O O O S M S S
{ D
Pttt =t s (e T e e
(it ird e B—d
O O P P, N T N R NN N S O N S S S -
4] et e e e

S N S S SO A, R SO N N N L N, O O
=l el e e e e (e T e (e
e M
(Bl g o
S S U S S SO SR S SN S S S U SO S U S T
e ok SNk L et g )
(e 0 b

b,

i

&

Fig 2: mesh

Solving the problem with Crank-Nikolson method for time discretization and SUPG method for spatial

discretization:
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As can be seen from the figures above, the solution for both methods are similar. There also some fluctuations
near the boundary can be observed.

d) Let us consider the same problem for quadratic elements. For CN+SUPG:
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For R22+SUPG:
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The both solutions are similar again. They are also similar to the solutions with linear elements, however there
is no fluctuations on the corner.
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