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1 Transport Problem

The actin filaments and monomers densities (F and G) are modelled by the following
coupled system of partial differential equations

∂F

∂t
= −u.∇F +DF∇2F − σFF (1)

∂G

∂t
= DG∇2G− σG + ˆσGFF (2)

where u(x, y) = −1
1500

(rx, ry) µm/s and r =
√
x2 + y2. A dirichlet boundary condition

F (r = 25) = 80µm is imposed and no flux neumann boundary condition is imposed for
the rest of the boundary for F and everywhere for G.

The two PDEs can be solved either in a monolithic fashion or a staggered fashion.
Since the PDE involving F does not contain G, the two PDEs can be solved in a decoupled
staggered way which is also computationally cheaper because it would involve solving two
smaller systems of linear equations instead of one big system of linear equations.

In order to solve the PDEs, we use a Crank Nicolson discretization in the temporal
direction and Linear Galerkin elements in space. The choice of crank nicolson can be
justified by its unconditional stability which would allow us to use coarser time steps as
well as second order accuracy in time. We can also observe that our convection velocity
is much smaller in order compared to the diffusion coefficient, hence making it a diffusion
dominated problem. We can conclude that there is no need for stabilization. We also
know that the crank nicolson scheme shows excellent properties of numerical damping
and phase error for low peclet numbers.

As an example the problem is solved on a mesh which is discretized with 20 elements
in the radial direction and 10 elements in the tangential direction shown below.

Fig 1. Mesh [NR × Nθ] = [20× 10]



1.1 Temporal Discretization

Ft = −u.∇F +DF∇2F − σFF
F n+1 − F n

∆t
= θF n+1

t + (1− θ)F n
t

∆F

∆t
− θ∆F n+1

t = F n
t where ∆F = F n+1 − F n

∆F

∆t
+ θ(u.∇)∆F − θDF∇2∆F + θσF∆F = u.∇F n +DF∇2F n − σFF n (3)

Similarly,

Gt = DG∇2G− σG + ˆσGFF

Gn+1 −Gn

∆t
= θGn+1

t + (1− θ)Gn
t

∆G

∆t
− θ∆Gn+1

t = Gn
t where ∆G = Gn+1 −Gn

∆G

∆t
− θDG∇2∆G+ θσG∆G = DG∇2Gn − σGGn + ˆσGFF

n + θ ˆσGF∆F (4)

1.2 Spatial Discretization

Let us multiply a test function w and integrate over the domain.

(w,
∆F

∆t
) + θ(w, (u.∇)∆F )− θDF (w,∇2∆F ) + θσF (w,∆F ) = ...

(w, u.∇F n) +DF (w,∇2F n)− σF (w,F n)

Integration by parts and ignoring the boundary integrals due to zero flux boundary
condition on ΓN and w = 0 on ΓD

(w,
∆F

∆t
) + θ(w, (u.∇)∆F ) + θDF (∇w,∇∆F ) + θσF (w,∆F ) = ...

(w, u.∇F n)−DF (∇w,∇F n)− σF (w,F n)

( 1

∆t
M + θC + θDFK + θσFM

)
∆F =

(
C−DFK− σFM

)
F n (5)

Similarly for Eq. 4,

(w,
∆G

∆t
)− θDG(w,∇2∆G) + θσG(w,∆G) = ...

DG(w,∇2Gn)− σG(w,Gn) + ˆσGF (w,F n) + θ ˆσGF (w,∆F )

Integration by parts and ignoring the boundary integrals due to zero flux boundary
condition on ΓN

(w,
∆G

∆t
) + θDG(∇w,∇∆G) + θσG(w,∆G) = ...

DG(∇w,∇Gn)− σG(w,Gn) + ˆσGF (w,F n) + θ ˆσGF (w,∆F )



( 1

∆t
M+θDGK+θσGM

)
∆G =

(
−DGK−σGM

)
Gn+

(
ˆσGFM

)
F n+

(
θ ˆσGFM

)
∆F (6)

where,

(w, v)→M Mab =

∫
Ω

NaNbdΩ

(∇w,∇v)→ K Kab =

∫
Ω

∇Na.∇NbdΩ

(u.∇w, v)→ C Cab =

∫
Ω

Nb(u.Na)dΩ

1.3 Numerical results

Eq. 5 and 6 are solved at each time step to obtain the evolution of the variables F and
G in time. Initial condition is taken as 0 on Ω except the dirichlet boundary ΓD for both
F and G. The following parameters are considered for the results presented.

DF = 5µm/s σF = 0.25s−1

DG = 15µm/s σG = 2s−1 ˆσGF = 0.5s−1

F (r = 25) = 80µM [NR ×Nθ] = [20× 10]

tfinal = 0.5s No of time steps = 50

Convection velocity given by u(x, y) = −1
1500

(rx, ry) µm/s and r =
√
x2 + y2. θ is

chosen to be 0.5 in order to obtain second order accuracy in time. θ can also be chosen
to be 0, 1, or 2

3
in order to solve the problem using forward euler, backward euler and

galerkin method respectively but at the cost of only first order accuracy in time.

Convection velocity u(x, y) = −1
1500(rx, ry) µm/s Quiver plot



Convection X velocity function Convection Y velocity function

Fig 2a: Final F Fig 2b: Final G



Fig 2c: Final F Contour Fig 2d: Final G Contour

Fig 2e: Final F Fig 2f: Final G

The X velocity, Y velocity and the quiver plot of the convection velocity function u(x, y) =
−1

1500
(rx, ry) were plotted. The final F and G densities and their contours corresponding to

the convective velocity are plotted. It was observed that the dirichlet boundary condition
F (r = 25) = 80 is imposed correctly and also visually it can be observed that the slope
of the function on the boundaries where the zero flux condition is imposed equals 0.



2 Stokes Problem

Consider the general stokes problem given by

−∇ · σ = b in Ω (Equilibrium)

∇ · v = 0 in Ω (Incompressibility)

v = vD on ΓD (Dirichlet BC)

n · σ = t on ΓN (Neumann BC)

σ = −pI + 2µ∇sv (Linear Stokes law)

with prescribed velocity boundary conditions at r = 15 and r = 25 and zero traction
boundary condition everywhere else.

ur(r = 15) = −0.15 uθ(r = 15) = 0

ur(r = 25) = −0.30 uθ(r = 25) = 0

Since we intend to impose the zero traction boundary condition exactly, let us for-
mulate in terms of cauchy stress rather than in terms of velocity and pressure. Let us
multiply a test function w and integrate over the domain.

−
∫

Ω

w · ∇ · σdΩ =

∫
Ω

w · bdΩ∫
Ω

q∇ · vdΩ = 0

Using Greens theorem we get,∫
Ω

∇w : σdΩ−
∫
∂Ω

w ·���:0
σ · n dΓ =

∫
Ω

w · bdΩ∫
Ω

∇w : (−pI + 2µ∇sv)dΩ =

∫
Ω

w · bdΩ

−
∫

Ω

p∇ · wdΩ +

∫
Ω

2µ∇w : ∇svdΩ =

∫
Ω

w · bdΩ

The equations that are going to be solved are

2µ

∫
Ω

∇sw : ∇svdΩ−
∫

Ω

p∇ · wdΩ =

∫
Ω

w · bdΩ (7)∫
Ω

q∇ · vdΩ = 0 (8)

They can be rewritten as

a(w, v) + b(w, p) = (w, b) ∀w ∈ V (9)

b(v, q) = 0 ∀q ∈ Q (10)[
K G
GT 0

] [
u
p

]
=

[
f
h

]



2.1 Imposing Essential (Dirichlet) Boundary conditions

Since the dirichlet boundary conditions are prescribed in polar coordinates, they have to
be transformed to Cartesian coordinates and then prescribed.

x = rcosθ y = rsinθ r =
√
x2 + y2

θ = tan−1 y

x
vr = ṙ vθ = rθ̇

vx =
dx

dt
= ṙcosθ − rθ̇sinθ vy =

dy

dt
= ṙsinθ + rθ̇cosθ

vx = vrcosθ − vθsinθ vy = vrsinθ + vθcosθ[
vx
vy

]
=

[
cosθ −sinθ
sinθ cosθ

] [
vr
vθ

]
The dirichlet boundary conditions that were imposed are

vx(r = 25) = (−0.30)
x√

x2 + y2
vy(r = 25) = (−0.30)

y√
x2 + y2

vx(r = 15) = (−0.15)
x√

x2 + y2
vy(r = 15) = (−0.15)

y√
x2 + y2

2.2 Verification of solver

The results are presented for the problem solved using Q2Q1 LBB stable elements where
the velocity is approximated using quadratic finite elements and pressure is approximated
using linear finite elements. The GLS stabilization was also implemented which allows
us to use non LBB stable elements like Q1Q1 or P1P1 elements.

Fig 3a: Q2 Mesh for Velocity Fig 3b: Q1 Mesh for Pressure

The correctness of the solver employed was verified by performing an order of con-
vergence analysis on a problem with a priori known exact solution. The L2 error of the
pressure , L2 error of the velocity and the H1 semi-norm error of the velocity were com-
puted successively with refinement. The error versus the element size were plotted on a
logarithmic scale.



Fig 4. Order of Convergence

Expected order of 3 was observed for L2 error of the velocity because of the use of Q2

elements to interpolate velocity. Expected order of 2 was observed for H1 semi-norm error
of the velocity and expected order of 2 was observed for L2 error of the pressure beacause
of the use of Q1 elements to interpolate pressure.

L2 norm Pressure H1 semi norm Velocity L2 norm Velocity



2.3 Numerical Results

Fig 5. Velocity profile

Fig 6a: Y Velocity Fig 6b: X Velocity



Fig 7. Pressure profile[
vr
vθ

]
=

[
cosθ sinθ
−sinθ cosθ

] [
vx
vy

]
(11)

Fig 8a: Radial Velocity Fig 8b: Tangential Velocity

The X velocity, Y velocity and the quiver plot of the velocity profiles were plotted. The
radial and the tangential components of the velocity were computed from the X and
Y velocity to ensure that the boundary conditions at r = 25 and r = 15 are correctly
imposed. Computed pressure was visualized. It was observed that the pressure reached a
high value in the corners and hence it would be better to go for adaptive meshing towards
the corners.



3 Coupled Problem

The equations governing the coupled flow are given by

ν∇ · (∇su) +∇ · σm(F ) + Tm(u) = 0 in (0, T )× Ω (12)

∂F

∂t
= −u.∇F +DF∇2F − σFF in (0, T )× Ω (13)

∂G

∂t
= DG∇2G− σG + ˆσGFF in (0, T )× Ω (14)

with the dirichlet boundary conditions are

vx(r = 25) = (−0.30)
x√

x2 + y2
vy(r = 25) = (−0.30)

y√
x2 + y2

vx(r = 15) = (−0.15)
x√

x2 + y2
vy(r = 15) = (−0.15)

y√
x2 + y2

F (r = 25) = 80µm

and traction is zero everywhere else for u and no flux boundary condition everywhere else
for F and G.

Fig 9. Q2 elements for interpolating u, F,G

Equations 13 and 14 are discretized in time using Crank Nicolson method and Galerkin
method in space. The weak form is given by the following. Refer to Section 1.2 for the
detailed derivation.

(w,
∆F

∆t
)+θ(w, (u.∇)∆F )+θDF (∇w,∇∆F )+θσF (w,∆F ) = (w, u.∇F n)−DF (∇w,∇F n)−σF (w,F n)

(w,
∆G

∆t
)+θDG(∇w,∇∆G)+θσG(w,∆G) = DG(∇w,∇Gn)−σG(w,Gn)+ ˆσGF (w,F n)+θ ˆσGF (w,∆F )

( 1

∆t
M + θC + θDFK + θσFM

)
∆F =

(
C−DFK− σFM

)
F n (15)



( 1

∆t
M+θDGK+θσGM

)
∆G =

(
−DGK−σGM

)
Gn+

(
ˆσGFM

)
F n+

(
θ ˆσGFM

)
∆F (16)

Equation 12 is multiplied with a test function w and integrating over the domain Ω∫
Ω

wν∇ · (∇su)dΩ +

∫
Ω

w∇ · σm(F )dΩ +

∫
Ω

wTm(u)dΩ = 0

Integrating the first and the second term by parts and applying the appropriate boundary
conditions,

−
∫

Ω

∇sw : ν∇sudΩ−
∫

Ω

∇sw : σm(F )dΩ +

∫
Ω

wTm(u)dΩ = 0

−Ku+ TfF + Tuu = 0

−Ku+ Tuu = −TfF
∗ (17)

3.1 Algorithm Employed

1 f o r time loop −−− n
2 .
3 .
4 whi le t o l e r a n c e on | | F n ( k+1) − F n ( k ) | |
5 and | | u n ( k+1) − u n ( k ) | | −−− k
6 .
7 Solve Eq 17 to compute u n ( k+1) us ing F n ( k )
8 Solve Eq 15 to compute F n ( k+1) us ing u n ( k+1)
9 .

10 end
11 u n (n+1) = u n ( k+1)
12 F n (n+1) = F n ( k+1)
13 .
14 Solve Eq 16 to compute G n(n+1) us ing F n (n+1)
15 .
16 end



3.2 Numerical Results

The numerical results obtained for tfinal = 0.5s No of time steps = 50 are presented.

Fig 10 a. Final Velocity profile

Fig 10 b: Final X Velocity Fig 10 c: Final Y Velocity



Fig 10 d: Final F density Fig 10 e: Final G density

Fig 10 f: Radial Velocity Fig 10 g: Tangential Velocity

The X velocity, Y velocity and the quiver plot of the final velocity profiles were plotted.
The final F and G density corresponding to the computed convective velocity are plotted.
The radial and the tangential components of the velocity were computed from the X and
Y velocity to ensure that the boundary conditions at r = 25 and r = 15 are correctly
imposed.



4 Difficulties and some comments

The behavior of the coupled problem was not able be reproduced for a lower order linear
interpolation of u, F,G for a reason yet to be known. Absence of a known initial condi-
tion for F and G densities brings ambiguity into the system. Inability to understand the
practical physics of the problem under the given boundary conditions lead to inability of
validating the model and the numerical solution of the coupled system. It is clear that
much additional work is required before a complete understanding of this problem for
myself.

To clone or Download, use git or checkout with SVN using the following web URL for
all the codes and supporting files that were developed to solved the three problems.

https://github.com/sanathkeshav/FEF Final Assignment.git

https://github.com/sanathkeshav/FEF_Final_Assignment.git
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