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1 Propagation of a Cosine Profile

In the first part of this report we will comment on the stability and accuracy of some different implemented
numerical methods to solve the problem of a classically implemented cosine profile propagation.

l.a Second-order Lax-Wendroff (TG2) Method

Here we will comment on the numerical experiments, in particular stability and accuracy, and compare with
the expected results from the theory. We will first implement the Second Order Lax-Wendroff (TG2) finite
element method scheme. The results can be seen below.
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Figure 1: Propagation of Cosine profile for TG2 C=0.5 (left) C=0.63 (right)

Above we can see two different Courant number implementations. On the right hand side, we have
results for an implementation with Courant number of 0.63. This value is out of the stability criterion of
Second Order Lax-Wendroff (TG3) C? < 1/3, and therefore we expect a high degree of oscillatory behavior
producing inaccurate and unstable results. The graphs confirm this phenomenon and verify from the theory.
On the left hand side we see the results for a Courant number of 0.5. This is within the stability criterion of
C? <1/3, and as we can notice from the figure, the graph is stable with some inaccuracies. We can expect
this method to be more accurate if we were to increase the time step thereby lowering the Courant number.
The following graph confirms this and coincides with the theory from the literature.
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Figure 2: High accuracy propagation of Cosine profile for C=0.1



1.b Third-Order Explicit Taylor-Galerkin (TG3) Method

Here we will comment on the second of the four numerical experiments, the Third-Order Explicit Taylor-
Galerkin (TG3) Method. The results for implementations of different Courant numbers can be seen below.
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Figure 3: Propagation of Cosine profile for TG3 C=0.9 (left) C=1.2 (right)

Above we can see two different Courant number implementations. On the right hand side, we have results
for an implementation with Courant number of 1.2. This value is out of the stability criterion of Second
Order Lax-Wendroff (TG3) C? < 1, and therefore we expect oscillatory behavior producing inaccurate and
unstable results. The graphs confirm this phenomenon and agree with the theory. On the left hand side we
see the results for a Courant number of 0.9. This is within the stability criterion of C? < 1, and as we can
notice from the figure, the graph is stable with very minimal inaccuracies. This method’s implementation
and results agree with the theory for the method.

1.c Second-Order Crank-Nicolson finite element method;

Here we will comment on the third of the four numerical experiments to be tested, the Second-Order Crank-
Nicolson Method. The results for implementations of different Courant numbers can be seen below.
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Figure 4: Propagation of Cosine profile for Crank-Nicholson C=0.5 (left) C=1.5 (right)

Above we can see two different Courant number implementations. On the right hand side, we have results
for an implementation with Courant number of 1.5, and on the left hand side we have results for Courant
number of 0.5. Both methods exhibit stability but it is clear from the graph that the implementation with a
Courant number of 0.5 is much more accurate than the implementation with Courant number of 1.5. These
results are consistent with the theory as a implementing the method with a lower time step will produce
higher accuracy results reflected in the lower Courant number as it is directly proportional to the value of
the time step.



1.d Fourth-Order Implicit Taylor-Galerkin (TG4) and Comparisons

Here we will comment on the last of the four numerical experiments to be tested, the Fourth-Order Implicit
Taylor-Galerkin (TG4) finite element Method. The results for implementations of different Courant numbers
can be seen below.
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Figure 5: Propagation of Cosine profile for TG4 C=0.5 (left) C=1 (right)

Above we can see two different Courant number implementations. On the right hand side, we have results
for an implementation with Courant number of 1. And on the left we have an implementation with a Courant
number equal to 0.5. Both of these implementations produce nearly identical results with the exception of
some slight inaccuracies in the graph with Courant number equal to 0.5.

Based on all the previous results, it can be seen that this method (TG4) has more accurate solutions
at lower Courant numbers when compared to the Crank-Nicholson method. It can also be concluded that
the TG3 method is inferior to the Crank-Nicholson method at higher Courant numbers. The Lax-Wendroff
second order method appears to be the least accurate and stable of the bunch. These observations from the
graphs coincide with the theory and this indicated that the implementations are correct.



2 Propagation of a Steep Front

2.a Various Crank-Nicholson Solutions

We will first solve the problem using the Crank-Nicholson scheme in time and linear finite element for the
Galerkin scheme in space. We will then comment on the accuracy of these solutions. The relevant figures
for this can be seen below.
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Figure 6: Crank Nicholson with Galerkin Solution with Courant Number of 0.75

Above we can see the results of the Crank-Nicholson in time and Galerkin in space implementation. This
graph exhibits some level of stability with a high degree of inaccurate oscillatory behavior trailing the steep
front. Since the Courant number has a value of 0.75, these results are fairly consistent with the theory
presented and available in the literature.

Now that we have these results, we can compare to the same Crank-Nicholson time discretization but
with a different space discretization. This space discretization will be the Galerkin Least Square (GLS)
discretization and can be seen on the next page by hand.
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Figure 7: Crank Nicholson with GLS on-paper development
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Figure 8: Crank Nicholson with GLS with Courant Number of 0.75

Above we can see the results for the Crank Nicholson in time with Galerkin Least Squares space dis-
cretization. It is very important to notice that the Crank-Nicolson with least-squares is successful in removing
the unwanted oscillations caused by the Galerkin only approach over the entire computational domain. And
because Crank-Nicolson is not a monotone scheme, there are some residual oscillations remaining at the
steep front.



3 The Gaussian Hill

3.a Implememtation of Adams-Bashforth

Here we will first develop the Adams-Bashforth method from the the literature before implementing it in the
codes. Below we can find the development of this method by hand.
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Figure 9: By Hand Development of Adams-Bashforth Method

Now that we have developed the Adams-Bashforth we will now implement it into the codes. This code
implementation and results can be seen on the following page.



30

31 % ADAMS-BASHFORTH METHOD

32 - case 5

33

34 %LEFT HAND SIDE OF ADAMS BASHFORTH

a5 - A= M;

36

37 %TERMS RIGHT HAND SIDE OF ADAMS BASHFORTH AT TIME STEP N
38 - B= —(3/2)%axdt+C + (3/2)=dtsnu*k;

39

4@ %TERMS RIGHT HAND SIDE OF ADAMS BASHFORTH AT TIME STEP N-1
41 - B_B= (1/2)#a%dt*C — (1/2)%dt=nuxk;

42

43 - methodame = 'Adams-Bashforth Method';

44

45

Figure 10: Code implementation of Adams-Bashforth Method
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Figure 11: Adams-Bashforth with Courant number of 0.1875

Above we can see the results for the Adams-Bashforth implementation with low Courant number and low
Peclet number. The results are almost perfect with very small variations on the cosine hill. This corresponds
to the theory and signals that the implementation is behaving correctly.



