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1 Inclusion of GLS Method and Triangular Quadratic Elements

We will first begin by including the Galerkin Least Squares method within the provided codes, this will be
done in the FEMsystem.m code file and can be seen in figure 1 below with code and associated comments.
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elseif method == 3 %GALERKIN LEAST SQUARES METHOD

%Here we have a variable aux made from nodal coordinates
Fmultiplied with shape functions
aux = N_ig#Xe;

%Here we are defining the reaction term using RT notation
scalling from another created functiom fTile
RT_ig = RT{aux);

%Here we generate the stiffness matrix K

Ke = Ke + (nus(Nx"sNx+Ny'=Ny) + N_ig'#(axsNx+aysNy)+...
N_ig'+RT_ig#N_ig + taus((({axsNx+ay+Ny)-nus(Nxx+Nyy)+ ...
RT_ig#N_ig) "#( (ax*Nx+ay+Ny ) -nu*(Nxx+Nyy) +RT_ig+N_1ig))))...
wdvolu;

FHere we are defining the source term using 5T notation
%calling from another created function Tile

f_ig = ST(aux);

%Here we have generation of force vector
fe = fe + (N_ig+taus((axs=Nx+ay+Ny)=nus(Nxx+Nyy))) '=(f_igwdvolu);

Figure 1: Inclusion of GLS method into System.m file

Now that we have included the GLS method, we will include the Triangular Quadratic element code.
This will be done in the ShapeFunc.m file and can be seen in figure 2 on the next page.



B5 SIMPLEMENTATION OF THE TRIANGULAR QUADRATIC ELEMENT

BE - elseif p ==

67 - M = [ xi.*{2%xi-1), eta.*{2%xeta-1), (l-xi-eta).*(2%(l-xi-eta)-1),...
68 dexi.#eta, d=xeta.#(l-xi-eta), 4=(l-xi-eta).=xil;

69

78 - Nxi = [ d4%xi - 1, zeros(size(xi)), d+eta + 4%xXi - 3,...

71 dxeta, -4dxeta, 4 - Bxxi - d=xetal;

72

73 - Meta = [ zeros(size(xi)), d4%eta - 1, d*eta + d*xi - 3,...

T4 dexi, 4 = dwxi - 8Bxeta, -4=xxi];

75

76 - N2xi = [ 4%ones(size(xi)), @+ones(size(xi)), 4%onesi(size(xi)),...
77 B+ones{sizel(xi) ), @+ones{sizel(xi)), -B+ones{size(xi))]:

78

79 - N2eta = [ @=ones(size(xi)), 4+ones(size(xi)), 4*ones(size(xi)),...
a0 B+ones{sizel(xi) ), -8+ones({size(xi)), @+ones{size(xi))]:

a1

82

83

a4 - else

Figure 2: Inclusion of the triangular quadratic element code in the ShapeFunc.m file

Now that w have included the necessary codes, we will verify that the method is functional for all 4 types
of element. This can be seen in the following figures.
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Figure 3a: GLS 10 linear quadrilateral elements (LQE) Figure 3b: GLS 10 quadratic quadrilateral elements (QQE)



Figure 3c: GLS 10 linear triangular elements (LTE) Figure 3d: GLS 10 quadratic triangular elements (QTE)

Here we can see the results of the Galerkin Least Squares approximation method for bot linear/quadratic
triangular /quadrilateral elements. From the Figures we can see that there is no significant difference between
the linear implementations of each element type. The same can also be said about the quadratic implemen-
tation of each element type. However, it can be said that both quadratic elements types are much more
accurate than that their linear counterparts.

2 Imposition of Zero Dirichlet Boundary Conditions

We will now modify the codes to solve a steady convection-diffusion reaction problem with zero Dirichlet
boundary conditions on the outlet boundary. We will then compare the new GLS method’s behavior to the
previously observed Neumann imposed boundary conditions. We will then solve the codes for some specified
values. The modified GLS method behavior can be seen in the figures below.

Figure 4a: Modified GLS 10 LQE Figure 4b: Modified GLS 10 QQE



Figure 4c: Modified GLS 10 LTE Figure 4d: Modified GLS 10 QTE

Above we have successfully imposed the prescribed zero dirichlet boundary condition for all of the previous
cases. The first and most blatant observation that can be made is the apparent spike that is present in both
linear cases but not present in the quadratic cases. This spike is due primarily to the oscillatory behavior
exhibited by the Galerkin Least Squares approximation method when trying to enforce a prescribed dirichlet
condition. It is no where near as definitive in the quadratic case counterparts because of the increased number
of degrees of freedom captured by these element types. We will now draw some additional comparisons
between the 2 sets of figures, this can be seen below.

CLS 10 LQE CLS 10 QQE GLS 10 LTE GLS 10 QTE

M GLS 10 LQE M GLS 10 QQE M GLS 10 LTE M GLS 10 QTE

Here we have all four original solutions above their modified counterparts. It is apparent from these
graphs that the quadratic element types give a significant increase in accuracy in the solution, this is to be
expected and is consistant with the theory. It worth noting that these Galerkin Least Squares approximations
exhibit a bigger dip along the central-diagonal wave front, this is also due primarily to the oscillatory behavior
exhibited by the Galerkin Least Squares approximation method, and coincides with the theory nicely.



We will now solve the specified problems using Galerkin Least Squares approximation with quadratic
quadrilateral elements. We will use quadrilateral elements because they better fit our square geometry and
will use quadratic elements because the produce results of higher accuracy as has been shown previously in
this report.
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Figure 5: Two views of GLS solution to convection-reaction dominated case

Here we have 2 views of the same solution to a convection-reaction dominated case of the 2D steady
transport problem. The problem parameters are as follows, the convection coefficient a=0.5, the diffusion
coefficient v = 0.0001, and the reaction term o = 1. On the right hand figure above we can notice a semi-
abrupt transition to the imposed dirichlet boundary condition when compared to the reaction dominated
case on the following page. This is a result of the extremely low value of the diffusion coefficient not allowing
as much velocity to diffuse from the system as in the reaction dominated case on the next page.

Figure 6: Two views of GLS solution to reaction dominated case

Similarly to what we have seen in figure 5, above in figure 6 we can see two views of the same solution to
a reaction dominated case of this problem. The problem parameters are as follows, the convection coefficient
a—=0.001, the diffusion coefficient v = 0.0001, and the reaction term ¢ = 1. We can notice that the once
semi-abrupt transition described above is now much smoother and gradual. This is a result of the decreased
relative convection value allowing more velocity to diffuse out of the prescribed dirichlet boundary than in
the convection-reaction case presented above in figure 5.



