UNIVERSITAT POLYTECHNICA DE CATALUNYA
MSc COMPUTATIONAL MECHANICS
Spring 2018

Finite Elements in Fluids

FEFMATLAB2

Due 02/04/2018

Alexander Keiser

CIMNE®

1 Implementation of Leap-Frog Method

We will first begin by developing the formulation for the leap-frog method that we can plug into the provided
codes. This derivation can be seen below.

=> Leap ‘((03 Memoh

\:)f\-\\ _ \)(\.\
ank

))
- \‘)-k

o
Pe Sovice Yern &b 2€co

n=\
+\ n
L° B

B

YNS Bt

O (v \,*l(—*f\
00UV, k(\’\(o()\)c‘.ﬂfj Ne 60\’-(\" {ormola

an N ygo©
9 X T o\ W
Lo _’5-; - gbt

— A“// @)

2 A
o V”\(’ (§ " o) &»Um\ - \\)nqux ‘
%..st (' o\ WY o= T‘N Uoor

a-\
N n-\- ‘l 9]
(o, fevcdioey TR /

= N ‘N (ST
Lita W= Ny oNes B2

l\\\“\{ O N\l_\\l. RS Qv~\‘](l\\"_\u"
Topt VNS
oo we ¥oow Anet Mz Gy Pha g
.,ﬁ\»«— dv = O CTU“ - O‘(-—Uh
ADt . "
.,-——"'"/ -
\ M()\): - &bto(,\)" e)’ ‘,,)th\C,

Using the above derivation, we can make the first addition to the codes to successfully implement the
leap-frog method. This can be seen on the next page in figure 1.

21 - case 5 % Leap Frog

22 - A =M;
23 - B ==Z=a=dt=(C;
24 - methodName = "LF";

Figure 1: Code Modification to System.m for Leap-Frog

In the above figure, we have successfully implemented matrices A and B from our derivation on the
previous page into the provided Matlab file System.m. We will now modify the code in Main.m to finish the
implementation. This will be done in 2 steps since the Leap-Frog method is not able to be started by its
self. This code and relevant comments can be seen below.

78
79
ae
81
a2
83
a4
85
a6
a7
a8
29
]t
91
g2
93
94
95
96
97
98
99
168
181
182
183
1084
185
106
187

if method==5 SLEAP-FROG METHOD

HWe will first start with an iteration of Lax=Wendroff because the leap
%frog method cannot start on its own, it needs a U~{n=1) term to begin

for n= l:nStep
%loading the Lax-Wendroff method to get the first time step for Leap-Frog
ii n==1
[A,B,methodMame]l= System{1,M,K,C,a,dt);
DELTA_U = AN(B=u(l:nPt,n));
ufl:nPt,n+1) = ul{l:nPt,n) + DELTA_U;
clear A,B;

%Mow that we have the first time step we can begin implementing Leap-Frog

else
[A,B,methodMame]l= System{5,M,K,C,a,dt);

%Mow rearranging for DELTA_U giwves us
DELTA_U = AN(Bsu(l:nPt,n));

%And adding DELTA_U to U~(n-1) gets us back to the desired Leap-Frog result
uf{l:nPt,n+1) = u{l:nPt,n=1) + DELTA_U;

end
end

Figure 2: Code Modification to Main.m for Leap-Frog

Now that we have implemented the Leap Frog method, it is time to analyze the plots for this method
with varying Courant numbers and comment on the results. This can be seen on the next page.

t=1.5 t=1.5 t=1.5

PR Exact solution 4 L|=Exact solution , PR Exact solution
—LF solution —LF solution —LF solution

0.5 05 0.5

= 0 j} 0
-0.5 05 -0.5

-1 At -1

0 015 1‘ 115 é 2, 3 0 0.‘5 1‘ 1.‘5 é 2.‘5 3 0 0.‘5 1‘ 115 é 2.‘5 3
Figure 3a: Courant Number = 2 Figure 3b: Courant Number = 0.5 Figure 3c: Courant Number = 0.125

Here are the results from running problem 2 with the leap frog method at varying Courant numbers by
changing the number of time steps. Figure 3a was run with 60 time steps resulting in a Courant number of 2.
As expected, this plot exhibits high inaccuracy and instability since the Courant number is much higher than
allowable. Figure 3b was run at the default number of 240 time steps resulting in a Courant number of 0.5.
This Courant number is within the threshold for stability but produces some small unwanted oscillations and
inaccuracies as time goes on at the first and last oscillations of the exact solution. Figure 3c was run with
960 time steps resulting in a Courant number of 0.125. This Courant number is very low so the high degree
of accuracy and stability exhibited by the method in the figure is expected. In conclusion, the implemented
leap frog method was done correctly and performs as expected.

2 Implementation of Third Order Taylor Galerkin Method

We will begin this section by developing the Third Order Taylor Galerkin Method. This can be seen below.

Third Ocder To\(lor So\er\!ﬂ

SYCHER EEVICSR!

It

! N L aP o, (W) r Ol
Ukkl;"\-\-;allt\)m&t*—ébt ttk,(3)

Lith L, = 8- ov\)n

Ve ;{ ov/s 4 (oV\) v°

kn“' f")
o
O&tk 5&{—, oN /5'5*- (ov\ At
DY
Ko —ogo® s+ Lk (eTY Vs \ Dt (‘q3 ~t
nt a
_ 9—‘3’:(&7\1 oY voVU + ibt ko:q\ \) App\\,ihfj
‘T e foleckin S

bk 6

b{:c\ U
AV atiul wq“(ﬁt’_\: —a\wao” qu
W T Dt

\Me@m‘\‘ng oy portse..
~At0~ &wv (av) = Ato‘ va'\‘l(’”)}(‘ x

eat

N “qu’x
- C\quu B O\E\) rw\'

S n
7 %
AQ()\ 5\)‘05* *\)*\ 3
— NiNg (89 4 M; Nty 89) = oty = Bted Ny
'J.

[M N A’c: K-] (ov) = _O\.AtCJA' -%\Ak:'l(.\'1 K"

[M+ bi‘& K] (pv)= - (o.bkﬁ x ‘aat’cf‘Kw "

22
A:M—\»_A_f’gf}_.\(

R-- (omu— R K\

Now that we have developed the method, It is time to implement it in the codes provided. This imple-
mentation can be seen on the next page in the following figure.

25 - case b % third order taylor galerkin

26 - A =M+a™2=dt™d fo=k]
27 - B =({-a%dt+C)-(0.5%a"2+dt"2+K] ;
28 - methodMame = '3rd0Ord-TG";

Figure 4: Code Modification to System.m for Third Order Taylor Galerkin method

Here we have implemented the A and B matrices that were derived on the previous page into the
System.m file. No additional modifications are necessary and no code must be added to Main.m to successfully
implement the method. Below in the following figures we will test this method for various Courant Numbers
and analyze the resulting plots.

0

------- Exact solution
—3rdOrd-TG solution

0.5 1 15 2 25 3

05

o

05

ERs

t=1.5

Exact solution
—3rdOrd-TG solution

0

0.5

1

1.5

2

25

3

0.5

0

-0.5

El

t=1.5

-------- Exact solution

—3rdOrd-TG solution

0

0.5 1 15

2

25

3

Figure 4a: Courant Number = 2 Figure 4b: Courant Number = 0.5 Figure 4c: Courant Number = 0.125

Here are the results from running problem 2 with the Third Order Taylor Galerkin method at varying
Courant numbers by changing the number of time steps. Figure 4a was run with 60 time steps resulting
in a Courant number of 2. This plot exhibits high inaccuracy and instability since the Courant number
is much higher than its allowable value of C? < 1. Figure 4b was run at the default number of 240 time
steps resulting in a Courant number of 0.5. This Courant number is within the threshold for stability of
C? < 1 and therefore behaves accurately and exhibits stability. It is worth noting that there are some slight
inaccuracies at the first and last oscillation peaks of the exact solution. Figure 4c was run with 960 time steps
resulting in a Courant number of 0.125. This Courant number is very low so the high degree of accuracy
and stability exhibited by the method in the figure is expected. In conclusion, the implemented Third Order
Taylor Galerkin method is correct and performs as expected.

3 Implementation of Third Order, Two Step Taylor Galerkin Method

We will begin this section by developing the Third Order Two Step Taylor Galerkin Method. Step 1 can be
seen below, and Step 2 can be seen on the following page.

i&@ ONE

— a 2~
U(\:\)(_\(_\gbh\)bfd\atott

Wdh s - agv”
a4 N
o (om V)
Vp = (o)
rcw'A-InS 0s. -
2 a6
D% 0 L e TV s st T
2
Wyt NI
opeynj 6@\(1‘\4 0s

2 A
XWD(‘ = S\»vn - btae &wq\)n-\- ouxtacf ng v
3

lo‘regcod- ing oy Pcr‘\s .

-sto oo = bt o [_u“vwﬂl
2 2

2 o
dﬁt&al quguﬁ - ’o(bi?O\ [V\.)VU 3

00d sooghitutia 4 -

N — ._r\ OA{: . ~ﬁ~ % o®
N‘NJU = N|N6\) + ——-—:5‘_’\"”1u\) OLAt(’\ N‘K\MXJU

- 2 A
M3" = N\u“-‘éagth“—dLth* Ko

M B0 = - (l:—scmtc-r YNe K)u"

A=M
- -(lgggtc+ou.st°‘a’ K)

Now that we have developed the first step of the method, we will proceed to develop the second step on
the following page.

STEP TWO

o \ LR
N - \)f* At \){ 4 5\[,\1 \)th
Q/c\, a
S A

~](, //1(") ((,\W \:l\/) o

-0 S - o<USA

Ut 7 Yt) .
R

- 0 \
from Skplue Koow 2 VO = L A =,
O we coen S0 .--

1 a
(C\VYDO z (oﬂ)q[\)"J«éA{ \ C\Vuﬁ> + ol [_\{:DA ((fv\ v ’X

~ A
U, =
tt

Phese termg ore zece

- L N
A = oN v + O 10 _
U{,Jc & w becevse ordas of 2

_ 2 0 o ‘r\c c oc do e |
Uge = (oY 0 of Tewre |
ond P\Ugsms ek nte cor odb;ng\ equuﬂor\ (3".\ €S VS,

n

>
M = U - AtaTO s :'\l&“m vTo appNiN Y

an o AV o3 2 0 aelec¥inS
Swu = Suu - c\Atngu + e AX Swv [§) «_ "
lﬁ’f?grod'-ns b\, Po:‘\’s...
- c\AtSquﬂ =3 at)t[u“\?wl
r‘w*

02 i nga v = ’lg\ gV vavu“ .&v‘

oot
F‘mo\\\f
N;N'K\J'“H = N‘.N‘J\)A 10t e Nxh)y.'.\)" - \atfbta th\x,\’“
Q?wr*l(\g

Now that we have developed both steps of the method, It is time to implement these steps in the codes
provided. These implementations can be seen on the following pages. It is worth noting that the value is

given and is a = (1/9).

29
20
i1
32
33
34
35
36
37

case 7 % step 1 of third order 2-step taylor galerkin
A= M;
B = =(1/3)#awdt+C = (1/9)%dt"2+a™2=K;
methodMame = 'first step';
case 8 % step 2 of third order 2-step taylor galerkin using a pseudo
wCcase 8
A= M;
B = —asdt*C-(0.5)#%a™2%dt"2;
methodMame = "3Ird0rd=25=TG";

Figure 5: Code Modification to System.m for Third Order, Two Step Taylor Galerkin method

Here we have implemented all the A and B matrices that were derived on the previous pages into the
System.m file. It is worth noting that 2 steps are being used and that the values of A and B are cleared and
overwritten before moving on to the second step.

189
118
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

else if method== %3rd ORDER TWO S5TEP TAYLOR GALERKIN METHOD

HWe will start with Implementing the first step of of the 3rd order two
%step taylor galerkin method

for n= l:nStep

[A,B,methodMame]= System(7,M,K,C,a,dt);
DELTA_U= A\(B#u({l:nPt,n));
UBAR=u(l:nPt,n) + DELTA_U;

clear A,B;

%We will now 1mplement the second step using a pseudo “case 8" in our
BSystem.m file

[A,B,methodName]= System{8,M,K,C,a,dt]);
DELTA_U= AN(B#u(l:nPt,n)=(0.5)*a"2+dt"2+K+UBAR);

sAfter proper implementation we can get our final correct U~{n+l) wvalues
u{l:nPt,n+1l) = u{l:nPt,n) + DELTA_U;

end

Figure 6: Code Modification to Main.m for Third Order, Two Step Taylor Galerkin method

On the following page we will once again plot this method with different values of the Courant number
by varying the amount of time steps. We will subsequently analyze and comment on the results.

t=1.5 t=1.5 t=1.5

PR Exact solution 4 L|=Exact solution , PR Exact solution
—3rdOrd-2S-TG solution —3rdOrd-2S-TG solution —3rdOrd-2S-TG solution

0.5 051 0.5

=)

-0.5 -05r -0.5

- At A 1 -

0 O.‘5 1‘ 115 é 2.‘5 3 0 0.‘5 1‘ 1.‘5 é 2.‘5 3 0 0.‘5 1‘ 115 é 2.‘5 3
Figure 7a: Courant Number = 2 Figure 7b: Courant Number = 0.5 Figure 7c: Courant Number = 0.125

Here are the results from running problem 2 with the Third Order, Two Step Taylor Galerkin method
at varying Courant numbers by changing the number of time steps. Figure 7a was run with 60 time steps
resulting in a Courant number of 2. This plot exhibits such high inaccuracy and instability, that the plot is
not even visible relative to the exact solution. It is worth noting that as the code was plotting, the oscillations
were visible and appeared to grow with time. Since the Courant number is much higher than its allowable
value of C? < (3/4), this behavior is not out of the ordinary and is to be expected. Figure 7b was run at
the default number of 240 time steps resulting in a Courant number of 0.5. This Courant number is within
the threshold for stability of C? < (3/4) and therefore behaves accurately and exhibits stability. It is worth
noting that there are some slight inaccuracies at the first and last oscillation peaks of the exact solution
similar to how the Third Order, Single Step Method performed. Figure 7c was run with 960 time steps
resulting in a Courant number of 0.125. This Courant number is very low so the high degree of accuracy and
stability exhibited by the method in the figure is expected. In conclusion, the implemented Third Order,
Two Step Taylor Galerkin method is correct and performs as expected.

