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1. Steady Convection-Di�usion-Reaction

1.a. The weak form/FEM approximation derivation

The derivation of the weak form of the convection-di�usion-reaction problem starts with the

strong form of the equations
a · ∇u−∇ · (ν∇u) + σu = s in Ω,

u = ud in ΓD,

n · ν∇u = ν
∂u

∂n
= h in ΓN ,

being Ω, ΓD, ΓN and h respectively the domain, the Dirichlet boundary, the Neumann bound-

ary and the prescribed �ux. With this, the �rst equation is integrated over the domain in its

residual form and multiplied by the test functions w as∫
Ω
w(a · ∇u)dΩ−

∫
Ω
w∇ · (ν∇u)dΩ +

∫
Ω
w(σu)dΩ−

∫
Ω
wsdΩ. = 0. (1.1)

The di�usion term (second term of Equation 1.1) is integrated by parts in order to weaken its

continuity requirements. The residual equations takes the from of∫
Ω
w(a · ∇u)dΩ−

∫
��ΓD+ΓN

w · (n · ν∇u)dΩ +

∫
Ω
∇w · (ν∇u)dΩ +

∫
Ω
w(σu)dΩ−

∫
Ω
wsdΩ,= 0,

where the Dirichlet integration of the second term is excluded because the test functions were

chosen to be w = 0 on ΓD. Finally, the weak form of the convection-di�usion-reaction problem

reads ∫
Ω
w(a · ∇u)dΩ +

∫
Ω
∇w · (ν∇u)dΩ +

∫
Ω
w(σu)dΩ =

∫
Ω
wsdΩ +

∫
ΓN

whdΩ,

which can be expressed in a compact version as

a(w, u) + c(a;w, u) + (w, σu) = (w, s) + (w, h)ΓN
.
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Now using the discretization u = uh = Njuj (summation implied on the repeated indexes)

and the Galerkin approximation w = Ni, the weak form becomes[
a(Ni, Nj) + c(a;Ni, Nj) + (Ni, σNj)

]
uj = (Ni, s) + (Ni, h)ΓN

.

With this, the following system of equations can be presented

(K + C + M)u = f

where K, C, M, u and f are respectively the di�usion matrix, the convection matrix, the

reaction matrix, the unknowns vector and the force vector. This matrices are obtained by the

assembling of the �nite element method.

1.b. Results For Galerkin Aproximation

Tests are carried out for the Convection-Di�usion-Reaction problem using the Galerkin aprox-

imation to check the implementation of the code supplied. For all the tests, the space dis-

cretization h is going to be equal 0.2 with u = 1 in Γ2 and u = 0 in Γ4. The following test

cases are being executed:

1. a = 1, ν = 10−3, σ = 10−3, and s = 0,

2. a = 10−3, ν = 10−3, σ = 1, and s = 0,

3. a = 1, ν = 10−3, σ = 0, and s = 1,

4. a = 1, ν = 10−3, σ = 1, and s = 0.

Results obtained using the above parameters can be seem in Figures 1.1 and 1.2. It can

be observed that the �rst, third and fourth set of parameters present oscillatory behaviour.

This happens because the Peclet number of this simulations were bigger them 1. The second
simulation, which has a Peclet number of 0.01 does not present any oscillation.
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(a) First set of parameters, Pe = 100.
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(b) Second set of parameters, Pe = 0.01.

Figure 1.1: Results for the �rst and second set of parameters using Galerkin
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(a) Third set of parameters, Pe = 100.
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(b) Fourth set of parameters, Pe = 100.

Figure 1.2: Results for the third and fourth set of parameters using Galerkin

Now considering the same Galerkin approach without modifying the parameters a, ν, σ and

s, one can diminish this oscillations by decreasing the space discretizaion h and consequently,

decreasing the Peclet number. The exact value of the discretization can be obtained by

Pe =
ha

ν
= 1, h =

ν

a
= 10−3.

The use of this discretization size may solve the oscillations problem but gives rise to new

ones. For instance, the computational cost is highly increased, making the simulation time

to raise exponentially. Another problem encountered is that the code has to be prepared to

work with really large matrices, otherwise it cannot handle the allocations. For instance, the

Matlab code provided can only handle the discretization h = 10−3 with he implementation of

sparse matrices, otherwise, it returns an error.

1.c. SUPG and GLS Stabilization

1.c.1. Method Derivation

The fourth set of parameters (together with the �rst and third sets) present oscillatory results.

As mentioned, this problem can be �xed using a smaller discretization size, however, it is easier

and less costly to use stabilization techniques like SUPG and GLS.

The application of stabilization techniques for convection-dominated problems consists in

adding an extra term (function of the di�erential equation residual) on the Galerkin for-

mulation. This term will not only bring stability but also produced accurate results. The

Galerkin formulation with the stability term can be expressed as

a(w, u) + c(a;w, u) + (w, σu) +
∑
e

∫
Ωe

P (w)τR(u)dΩ = (w, s) + (w, h)ΓN
,

where P (w) is the term related to the stabilization method, τ is the stabilization parameter

and R(u) is the di�erential equation's residual. The stabilization parameter is calculated using

τ =
ν̄

||a||2
, ν̄ =

βah

2
,
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where β is a free parameter. Now the Streamline Upwind Petrov-Galerkin stabilization tech-

nique can be de�ned. It consists in applying the SU test function to all the terms of the

Galerkin weak form. The SUPG stabilization term takes the form of

P (w) = a · ∇w,

resulting on the following weak form expression

a(w, u) + c(a;w, u) + (w, σu) +
∑
e

∫
Ωe

(a · ∇w)τR(u)dΩ = (w, s) + (w, h)ΓN
.

The Galerkin Least Squares stabilization technique is de�ned by a weighted least-squares

formulation of the original Galerkin weak form. The stabilization term takes the form of

P (w) = a · ∇w −∇ · (ν∇u) + σw,

resulting on the following weak form expression

a(w, u) + c(a;w, u) + (w, σu) +
∑
e

∫
Ωe

(a · ∇w −∇ · (ν∇u) + σw)τR(u)dΩ = (w, s) + (w, h)ΓN
.

Its important to remark that when linear elements are used, the second derivative term of

the stabilization vanishes in both SUPG and GLS stabilization techniques. The implementa-

tion of this techniques on the Matlab code consisted in adding the stabilization term to the

FEM_system.m �le. The code implementation can be seem as following

elseif method == 2 % SUPG
Ke = Ke + (nu*(Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) ...

+ sigma*(N_ig)'*N_ig + tau*((ax*Nx+ay*Ny)'*(ax*Nx+ay*Ny)...
+ (ax*Nx+ay*Ny)'*sigma*N_ig))*dvolu;

fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))'*(f_ig*dvolu);

elseif method == 3 % GLS
Ke = Ke + (nu*(Nx'*Nx+Ny'*Ny) + N_ig'*(ax*Nx+ay*Ny) ...

+ sigma*(N_ig)'*N_ig + tau*(((ax*Nx+ay*Ny)'+sigma*N_ig')...

*(ax*Nx+ay*Ny) + ((ax*Nx+ay*Ny)'+sigma*N_ig')*sigma*N_ig))...

*dvolu;
fe = fe + (N_ig+tau*(ax*Nx+ ay*Ny + sigma*N_ig))'*(f_ig*dvolu);

1.c.2. Results

Results obtained for the fourth set of parameters using SUPG and GLS can be seem in Figure

1.3. Even though the Peclet number is high, no oscillations are present in any of the graphs.

Also, no major di�erence between the methods can be spotted. However, mathematically, the

GLS formulation for linear elements ampli�es the oscillations given by the Galerkin formulation

by a factor of 1 + στ more them SUPG.
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Figure 1.3: Results for the fourth set of parameters using stabilization tecniques.

1.d. Changing of Boundary Conditions

The fourth set of parameters with the use of SUPG was chosen for this problem. First, the

boundary conditions of u = 2 in Γ2 and u = 1 in Γ4 were applied in the same way as in the

problems before. After obtaining a solution using this B.C's, the reaction �uxes corresponding

with the Γ4 were obtained and stored in a �le, as shown in the following code.

% Calculate and store reaction fluxed provided by Gamma4 = 1
RF_Gamma4 = zeros(neq,1);
for i=1:length(nodesDir0)

RF_Gamma4(nodesDir0(i,1),1) = K(nodesDir0(i,1),:)*Temp(:);
end
fid=fopen('RF_Gamma4.txt','w');
fprintf(fid, '%20d \n', RF_Gamma4);
fclose(fid);

After that, a second calculation was done but without the Dirichlet conditions in Γ4. Instead,

the reaction �uxes calculated on the previous simulation were summed to the force vector

(imposition of the Neumann B.C's). The results obtained for both methods can be seem

in Figure 1.4. It can be observed that even for di�erent implementation of the boundary

conditions the results are the same meaning that the implementation used was accurate.

2. Transient Convection-Di�usion-Reaction

2.a. Method Derivation

2.a.1. Crank-Nicholson

The Crank-Nicholson time integration method can be expressed as a Pade method of approx-

imation R1,1. For a linear problem, the general implicit Pade methods can be me expressed

as

∆u

∆t
+ WL(∆u) = w[sn − L(un)] + W∆s, (2.1)
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(a) Results with Dirichlet Γ4
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(b) Results with Neumann Γ4

Figure 1.4: Results obtained with di�erent implementation for Γ4 boundary conditions.

being W and w parameters that characterize the method used. The problem to be solved will

not consider a source term or non-zero Neumman Boundary conditions, so their corresponding

equation terms are going to be omitted from the derivation. The L operator is the spatial part

of the di�erential equation and has the form of

L(∆u) = a · ∇(∆u)−∇ · (ν∇(∆u)) + σ(∆u)

L(un) = a · ∇un −∇ · (ν∇un) + σ(∆un).

For Crank-Nicholson, the method parameters are described as

∆u = ∆u = un+1 − un, W = 1/2, w = 1,

resulting on the �nal CN integration method

∆u

∆t
+

1

2

[
a · ∇(∆u)−∇ · (ν∇(∆u)) + σ(∆u)

]
= −

[
a · ∇un +∇ · (ν∇un) + σun

]
.

The space discretization follows the same procedure as in Section 1.a, and takes the form of

(w,
∆u

∆t
) +

1

2

[
c(a;w,∆u) + a(w,∆u) + (w, σ∆u)

]
= −

[
c(a;w, un) + a(w, un) + (w, σun)

]
,

(Ni, Nj)
∆uj
∆t

+
1

2

[
c(a;Ni, Nj) + a(Ni, Nj) + (Ni, σNj)

]
∆uj =

−
[
c(a;Ni, Nj) + a(Ni, Nj) + (Ni, σNj)

]
unj .

Finally, the discretization proposed can be solved using the following system of equations[
M +

∆t

2
(K + C + M)

]
∆u = −∆t

[
K + C + M

]
un. (2.2)
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2.a.2. Pade R2,2

The Pade R2,2 time integration method derivation follows a similar procedure as the Crank-

Nicholson method. It starts with the method coe�cients

∆u =

[
∆u1

∆u2

]
=

[
un+1/2 − un
un+1 − un+1/2

]
W =

1

24

[
7 −1
13 5

]
, w =

1

2

[
1
1

]
,

being plugged in the Equation 2.a.1. Considering the same L operator, the resulting equations

can be be expressed as[
∆u1

∆u2

]
1

∆t
+

1

24

[
7 −1
13 5

] [
a · ∇(∆u1)−∇ · (ν∇(∆u1)) + σ(∆u1)
a · ∇(∆u2)−∇ · (ν∇(∆u2)) + σ(∆u2)

]
=[

1/2
1/2

]
(a · ∇(un)−∇ · (ν∇(un)) + σ(un)).

Following the same procedure for the weak form as the in Section 1.a, the R2,2 Pade method

has the form of[
(w,∆u1)
(w,∆u2)

]
1

∆t
+

1

24

[
7 −1
13 5

] [
c(a;w,∆u1) + a(w,∆u1) + (w, σ∆u1)
c(a;w,∆u2) + a(w,∆u2) + (w, σ∆u2)

]
=[

1/2
1/2

]
c(a;w, un) + a(w, un) + (w, σun).

Finally, with the FEM discretization together with Galerkin, the resulting system of equations

can be expressed as[ [
M
M

]
+

∆t

24

[
7 −1
13 5

] [
C + K + M
C + K + M

]] [
∆u1

∆u2

]
=

∆t

2

[
C + K + M
C + K + M

] [
un

un

]
. (2.3)

2.a.3. SUPG Derivation

In the case that problem is convection-dominated, is likely that stabilization is required in order

to diminish oscillations. The weak form of the general implicit Pade method with stabilization

can be expressed as

(w,
∆u

∆t
)− (w,W∆ut) +

∑
e

(τP (w), R(∆u)) = (w,wunt ),

where

P (w) = W(a · ∇)w, τ =
[W−1

∆t
+ (

2a

h
+

4ν

h2
+ σ)I

]
W−1,

for the SUPG method. Now following the same procedure as before but carrying the stabi-

lization term, the stabilized Crank Nicholson system of equations can be expressed as[
M +

∆t

2
(K + C + M) + ∆tS

]
∆u = −∆t

[
K + C + M + Sn

]
un,
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where

S = τW(a · ∇)w
[ 1

∆t
+ WL

]
, Sn = τW(a · ∇)w[wL].

Using the same procedure, the �nal system of equations of the SUPG Pade R2,2 method with

has the form of[ [
M
M

]
+

∆t

24

[
7 −1
13 5

] [
C + K + M
C + K + M

]
∆t

[
S
S

]] [
∆u1

∆u2

]
=

∆t

2

[
C + K + M + Sn

C + K + M + Sn

] [
un

un

]
.

2.b. Code Implementation

The code implementation starts with the completion of the code provided. The matrices

K, M, and C together with the boundary condition matrices were already computed in the

code, meaning that the time integration method and the system solving would have to be

implemented.

2.b.1. Crank-Nicholson Implementation

In order to implement the method, the function System_CN.m was created. This function

receives the assembled matricesK, M, andC and grouped it up to return the system described

in Equation 2.a.1 as following

case 1 % Crank−Nicholson + Galerkin
A = M + 1/2*dt*(C + nu*K + sigma*M);
B = −dt*(C + nu*K + sigma*M);

case 2 % Crank−Nicholson + SUPG
A = M + 1/2*dt*(C + nu*K + sigma*M) + dt*S;
B = −dt*(C + nu*K + sigma*M) − dt*Su;

The matrices A and B are returned from this function to the main, where they will be used

to solve the linear system of equations together with the lagrange multipliers as

for n=1:nStep % Solution of the Crank−Nicholson system
du = [A , ADir' ; ADir zDir]\[B*u(:,n) ; bDir];
u(:,n+1) = u(:,n) + du(1:nNodes,1);

end

2.b.2. Pade R2,2 Implementation

The Pade implementation is a more involved, because it has to work with the 2-step system

proposed in the previous section. The resulting multiplication of the second term of Equation

2.a.2 result in a crossed system, meaning that the matrices have to be separated in blocks

depending on their corresponding coe�cients. In the elemental level, this matrices are con-

structed with the following code
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% K matrix for Pade method
Ke_Top = Ke_Top + Nxi_ig'*(W(1,1)*Nxi_ig + W(1,2)*Nxi_ig)*dvolu;
Ke_Bot = Ke_Bot + Nxi_ig'*(W(2,1)*Nxi_ig + W(2,2)*Nxi_ig)*dvolu;

% M matrix for Pade method
Me_Top = Me_Top + N_ig'*(W(1,1)*N_ig + W(1,2)*N_ig)*dvolu;
Me_Bot = Me_Bot + N_ig'*(W(2,1)*N_ig + W(2,2)*N_ig)*dvolu;

% C matrix for Pade method
Ce_Top = Ce_Top + N_ig'*(W(1,1)*aGradN + W(1,2)*aGr1adN)*dvolu;
Ce_Bot = Ce_Bot + N_ig'*(W(2,1)*aGradN + W(2,2)*aGradN)*dvolu;

% Stabilization matrix for delta u
Se_Top = Se_Top + (tau(1,1) + tau(1,2))*(W(1,1)*aGradN + ...

W(1,2)*aGradN)'*(N_ig/dt − (W(1,1)*nu*Lapla(ngaus,:) + ...
W(1,2)*nu*Lapla(ngaus,:)) + (W(1,1)*aGradN + W(1,2)*aGradN)...
+ (sigma*W(1,1)*N_ig + sigma*W(1,2)*N_ig))*dvolu;

Se_Bot = Se_Bot + (tau(2,1) + tau(2,2))*(W(2,1)*aGradN + ...
W(2,2)*aGradN)'*(N_ig/dt − (W(2,1)*nu*Lapla(ngaus,:) + ...
W(2,2)*nu*Lapla(ngaus,:)) + (W(2,1)*aGradN + W(2,2)*aGradN)...
+ sigma*(W(2,1)*N_ig + sigma*W(2,2)*N_ig))*dvolu;

% Stabilization matrix for u_n
Sue_Top = Sue_Top + (tau(1,1) + tau(1,2))*(W(1,1)*aGradN + ...

W(1,2)*aGradN)'*(aGradN − nu*Lapla(ngaus,:) + sigma*N_ig)*dvolu;
Sue_Bot = Sue_Bot + (tau(2,1) + tau(2,2))*(W(2,1)*aGradN + ...

W(2,2)*aGradN)'*(aGradN − nu*Lapla(ngaus,:) + sigma*N_ig)*dvolu;

With the assembled matrices, the function System_Pade was created to assemble the linear

system of equations as in Equation 2.a.2. Its important to remark that the set of equations

has to be solved simultaneously so the matrices have to be concatenated in blocks as shown

in the following code

case 3 % Pade R22
A = [M zeros(size(M)) ; zeros(size(M)) M] ...

+ dt*([C_Top C_Bot ; C_Top C_Bot] ...
+ nu*[K_Top K_Bot ; K_Top K_Bot] ...
+ sigma*[M_Top M_Bot ; M_Top M_Bot]);

B = −dt*([C, zeros(size(C)) ; zeros(size(C)), C] ...
+ nu*[K, zeros(size(K)) ; zeros(size(K)), K] ...
+ sigma*[M, zeros(size(M)) ; zeros(size(M)), M]);

case 4 % Pade R22 + SUPG
A = [M zeros(size(M)) ; zeros(size(M)) M] ...

+ dt*([C_Top C_Bot ; C_Top C_Bot] ...
+ nu*[K_Top K_Bot ; K_Top K_Bot] ...
+ sigma*[M_Top M_Bot ; M_Top M_Bot] ...
+ [S_Top S_Bot ; S_Top S_Bot]);

B = −dt*([C, zeros(size(C)) ; zeros(size(C)), C] ...
+ nu*[K, zeros(size(K)) ; zeros(size(K)), K] ...
+ sigma*[M, zeros(size(M)) ; zeros(size(M)), M] ...
+ [Su_Top Su_Top ; Su_Top Su_Bot]);

Now with A and B, the system of equations can be solved together with the Lagrange multi-

pliers for the boundary conditions imposition. The solution of the next step is now computed

making ∆u = ∆u1 + ∆u2 as the following code
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for n=1:nStep
f = [B*1/2*[u(:,n) ; u(:,n)] ; bDir];
K = [A , ADir' ; ADir, zDir];

du_aux = K \ f;
du1 = du_vec(1:nNodes,1);

du2 = du_vec(nNodes+1:2*nNodes,1);
du = du1+du2;
u(:,n+1) = u(:,n) + du;

end

2.c. Results

The code provided was adapted to solve for the proposed domain with a initial condition of

x0 = x(2 − x). Considering that the formulation works with increments, it is impossible to

solve the problem with the proposed boundary conditions because the initial condition do not

respect the boundaries. So the boundary conditions in Γ2 and Γ4 had to applied directly to

the initial condition

Now choosing tn = 5 (to achieve a steady solution), a time discretization ht = 20, ν = 0.1,
σ = 0.001, a = (−x,−y) and h = 0.1, the results for the Galerkin Crank-Nicholson and

Galerkin Pade can be seem in Figures 2.1.
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(a) Crank-Nicholson
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Figure 2.1: Results obtained for Crank-Nicholson and Pade R2,2 using Galerkin for ht = 20.
.

It can be observed that the Crank-Nicholson method experience a lot of oscillations, di�erently

from Pade. This happens because Pade is a higher order scheme, so it can handle a smaller

time discretizaion. With the increase of the time discretizaion, the Crank-Nicholson method

behaves like Pade, as can be seem in Figure 2.2.

Its important to notice that although Pade can handle smaller discretizations, its signi�cantly

slower, becauase it has to solve for twice as many nodes as the CN method. Now the time

discretization is going to be �xed to ht = 110 and the space discretization is going to be

devided by 2, results for this case can be seen in Figure 2.3.
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(b) Pade R2,2

Figure 2.2: Results obtained for Crank-Nicholson and Pade R2,2 using Galerkin for ht = 110.
.
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(b) Pade R2,2

Figure 2.3: Results obtained for Crank-Nicholson and Pade R2,2 using Galerkin for h = 0.05.
.

It can be observed that a �ner space discretization diminishes the oscillations present on the

boundary layer. This also can be achieved using the stabilizations methods, where oscilations

are diminished by the use of an up-wind formulation and arti�cial di�usion. Results for the

space discretiztion h = 0.1 with SUPG can be seem in Figure 2.4. It can be observed that the

stabilization methods diminish the oscillations, even for a courser mesh.

2.c.1. Quadratic Elements

In order to check the e�ects of quadratic elements on the results a course mesh will be chosen

and a simulation will be carried out with Crank Nicholson method using linear and quadratic

elements. Results for the same parameters as in the previous section with the use of a space

discretization h = 0.1 can be seem in Figure 2.5.
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Figure 2.4: Results obtained for Crank-Nicholson and Pade R2,2 using Galerkin for h = 0.05.
.
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(b) Quadratic Elements

Figure 2.5: Results obtained for Crank-Nicholson using linear and quadratic elements with

h = 0.1
.

As expected, results show that for the same discretization quadratic elements provide more

accurate results then linear elements. This expected because more nodes are being used and

the solution has a higher order approximation. However, this increase of number of nodes also

brings computational cost, with the quadratic elements being way more slow then the linear

elements.

Remark: The other available methods are not presented in this section because they all show

the same behaviour as Crank Nicholson for quadratic elements. However the code is also

prepared to solve for Pade, SUPG Crank Nicholson and SUPG Pade with quadratic elements.
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3. Stokes and Navier-Stokes

3.a. Stokes Problem

3.a.1. Problem Derivation

First, the weak form and �nite element approximation of the problem is going to be presented.

The derivation starts with the strong form of the steady state Stokes Equations using the

Linear Stokes Law as 
−ν∇2v +∇p = b in Ω,

∇ · v = 0 in Ω,

v = vd in ΓD,

−pn + ν(n · ∇)v = t in ΓN ,

where p is the dynamic pressure, ν is the kinematic viscosity and t is the prescribed tractions.

The derivation of the weak form goes on integrating the �rst and second equation over the

domain and multiplying by test functions w and q as∫
Ω
w · (−ν∇2v)dΩ +

∫
Ω
w · (∇p)dΩ−

∫
Ω
w · bdΩ = 0,∫

Ω
q(∇ · v)dΩ = 0.

Now the viscous and pressure terms are integrated by parts in order to weaken their continuity

requirements resulting in∫
Ω
∇w : ν∇vdΩ−

∫
��ΓD+ΓN

w · ν(n · ∇v)dΓ−
∫

Ω
p∇ ·wdΩ +

∫
��ΓD+ΓN

np ·wdΩ−
∫

Ω
w · bdΩ = 0,∫

Ω
q(∇ · v)dΩ = 0,

where the Dirichelet boundary integration is cancelled because w = 0 in ΓD. Now grouping

the ΓN terms into t and rearranging the equations, the weak form of the Stokes Equations

take the form of∫
Ω
∇w : ν∇vdΩ−

∫
Ω
p∇ ·wdΩ =

∫
Ω
w · bdΩ +

∫
ΓN

w · tdΓ,∫
Ω
q(∇ · v)dΩ = 0,

which can be rewritten in compact form as

a(w,v) + b(w, p) + b(v, q) = b(w,b) + b(w, t)ΓN
.

Now using the discretization v = uh = NAuiA and p = ph = N̂ÂpÂ together with Galerkin the

equations result in

a(NAei, NB)ujB + b(NAei, N̂Â)pÂ + b(NBei, N̂Â)uiB = b(NAei,b) + b(NAei, t)ΓN
.
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3.a.2. Convergence Analysis

The code provided was modi�ed to solve for the required domain and boundary conditions. A

convergence analysis will be carried out in order to �nd the optimal discretization. The Q2Q1

element is chosen for this simulations due its to quadratic convergence and stability (satis�es

the LBB condition).

The convergence analysis is carried out starting with a discretization of h = 0.4. The max-

imum values of velocity in the x and y direction are computed as reference. Results for the

convergence analysis can be seem in Figure 3.1.
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Figure 3.1: Results obtained for the convergence analysis using the Q2Q1 element.

It can be seem that results converge in a discretization size of of h = 0.1, all the following

simulations are going to be computed using this mesh size.

3.a.3. Results

The results obtained for the cavity problem using a viscosity of 1 can be observed in Figure

3.2. It can be seem that the main features of the classical cavity problem are being followed,

with the centred circulating �uid and the pressure singularities on the corners.
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Figure 3.2: Results obtained for pressure and velocity of the cavity problem using Stokes Equa-

tions.
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3.b. Navier-Stokes Problem

Now the Navier-Stokes Matlab Code is runned for Reynolds numbers of 1, 100, 1000 and 2000
with the same parameters used in the Stokes Problem. Results can be seem in Figures 3.3,

3.4, 3.5, and 3.6.
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Figure 3.3: Results obtained for pressure and velocity of the cavity problem using Navier-

Stokes equations with Re = 1.

The results obtained in Figure 3.3 are very similar to the ones obtained in the Stokes Problem.

This happens because at Re = 1 the �ow is highly viscous and the convective term do not

plays a big role. Also, this problem only took 2 newton iterations to solve the non-linearity,

which also re�ects the small e�ect of the inertial forces.
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Figure 3.4: Results obtained for pressure and velocity of the cavity problem using Navier-

Stokes equations with Re = 100.

In Figure 3.4, more signi�cant changes can be observed. The convective term now has a bigger

signi�cance, which is pushing the velocity stream-lines down together with the sliding plate.

Also, a little vortex is likely to be created on the top left corner due to the velocity gradient

present on this region. This simulation took 7 newton iterations to be solved, which is a

re�ects a more signi�cant presence of the inertial forces.

For the simulation correspondent to Figure 3.5, the convective forces are very high and at least
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Figure 3.5: Results obtained for pressure and velocity of the cavity problem using Navier-

Stokes equations with Re = 1000.

3 vortexes can be spotted in the velocity streamlines. The pressure contours are not symmetric

and the singularities on the corners are diminishing. This simulation took 25 newton iterations

to be solved, showing a high importance of the inertial forces.
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Figure 3.6: Results obtained for pressure and velocity of the cavity problem using Navier-

Stokes equations with Re = 2000.

Now in Figure 3.6, the maximum number of iterations was reached (99 iterations), meaning

that the result is not fully converged. Still, the results do make physical sense, with more

vortexes being created throughout the domain with the increase of the Reynolds number.
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