
UPC - BARCELONA TECH
MSc Computational Mechanics

Spring 2018

Finite Elements in Fluids

Lab 6: Incompressible Navier-Stokes equations

Due 1/06/2018

Prasad ADHAV

1 Stokes Problem

1.1 Computing Velocity and Pressure errors

We have to compute the velocity and pressure errors, by implementing the function files in MatLAB
as stated in problem statement. The convergence of Q2Q1 and Q2Q0 is to be observed.
The following figures show the convergence for the different elements, in different aspects such as num-
ber of elements and mesh size.

0 100 200 300 400 500 600 700 800 900

Total Number of Elements

0

1

2

3

4

5

6

7

8

V
e

lo
c
it
y
 E

rr
o
r

×10-3

0 100 200 300 400 500 600 700 800 900

Total Number of Elements

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

V
e

lo
c
it
y
 E

rr
o
r

-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

Characteristic Mesh Size

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

N
a
tu

ra
l
ln

(e
rr

o
r)

-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

Characteristic Mesh Size

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

N
a
tu

ra
l
ln

(e
rr

o
r)

a. Vel Err- No. of Elem Q2Q1 b. Vel Err Q2Q0 c. Vel Err- Mesh size Q2Q1 d. Vel Err Q2Q0

0 100 200 300 400 500 600 700 800 900

Total Number of Elements

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

P
re

s
s
u

re
 E

rr
o

r

0 100 200 300 400 500 600 700 800 900

Total Number of Elements

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

P
re

s
s
u

re
 E

rr
o

r

-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

Characteristic Mesh Size

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

N
a
tu

ra
l
e

rr
o
r

-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6

Characteristic Mesh Size

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

N
a
tu

ra
l
e

rr
o
r

e. Prss Err-No. of Elem Q2Q1 f .Prss Err Q2Q0 g .Prss Err-Mesh size Q2Q1 h. Prss Err Q2Q0

Figure 1.1 Error Graphs

The graphs 1.1.a and 1.1.b show the variation of velocity error w.r.t number of elements. The graphs
1.1.c and 1.1.d show variation of velocity error w.r.t characteristic mesh size. The graphs 1.1.e and
1.1.f show the variation of pressure error w.r.t number of elements. The graphs 1.1.g and 1.1.h show
variation of pressure error w.r.t characteristic mesh size.
As seen from the figures the errors do behave as per the theory. 1.1.a and 1.1.b it can be clearly
observed that error decreases with increases in number of elements, but for element Q2Q1 convergence
is faster than Q2Q0 as expected. Also, same can be observed for the velocity error w.r.t mesh size .
Observe the minor difference in the slope of the graphs.
The pressure error decreases with increase in the number of elements for Q2Q1 element. But it is
obvious that Q2Q0 does not behave in the expected manner, this is because of the lack of ability of
Q2Q0 element to accurately capture the pressure behaviour. Similar characteristics can be observed
from graphs 1.1.g and 1.1.h
It is clear that the Q2Q1 is a better of the two elements whose convergence we are observing.

1.2 Solving the problem using P1P1 Element

Let us now present a discussion for the case of choosing a linear triangular representation for both
velocity and pressure, i.e. P1P1 element. Figure 1.2 shows the results obtained after executing the code
for this element. This element does not satisfy the LBB condition, which guarantees the uniqueness
and existence of solution. Therefore, they present a spurious node-to-node response for the pressure
field. Also, for the case of the streamlines we observe the existence of some oscillation specially on the
boundaries of the mesh, Figure 1.2(b).

1

1.2(a)Refined mesh of P1P1 1.2(b)Streamlines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

1

-3000

-2000

0.8
1

-1000

0.6 0.8

0

0.60.4

1000

0.4
0.2

0.2

0 0

1.2(c)Velocity Field 1.2(d)Pressure field

2

2 Cavity Flow Problem

The cavity flow problem is a standard benchmark test for incompressible flows. The figure below shows
a schematic representation of the problem setting. The goal of this exercise is to analyze the results
obtained when adopting either the Stokes or the Navier-Stoke equations.

2.1

In this section the Q2Q1 elements with structured uniform mesh of 20× 20 is considered.

2.1(a)Refined mesh of Q2Q1 2.1(b)Streamlines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

-100

1

-50

1

0

0.8

50

0.5
0.6

100

0.4

0.2

0 0

2.1(c)Velocity Field 2.1(d)Pressure field
In this section we present to analyze the effect of solving the problem when a refined mesh near

the walls is considered, for Q2Q1 elements.
For the case of the structured uniform mesh, the results were already presented in Figure 2.1, where it
was noted the complete symmetry of the solution for streamlines and the reliable solution for the pres-
sure field as the element is LBB-conforming. Also, recall that this element has quadratic convergence.

Figure shows now the solution for the case of the Q2Q1 element but with a refined mesh near the
walls, Figure 2.1(e). The solution for the case of the streamlines does not differ much from the case
of the uniform mesh. Note the symmetry of this plot, Figure 2.1(f). On the other hand, for the case
of the velocity field it seems like there is some difference as the velocity is more concentrated near the
upper boundary. For the case of the pressure field, Figure 2.1(h), we observe that, even though both
plots represent similar shape, for the case of the refined mesh there is a smoother and thicker transition
from zero to non-zero values of the pressure on the upper corner of the boundary.

3

2.1(e)Refined mesh of Q2Q1 2.1(f)Streamlines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

-1500

1

-1000

-500

1

0

500

0.8
0.5

1000

0.6

1500

0.4

0.2

0 0

2.1(g)Velocity Field 2.1(h)Pressure field

For this problem, one should realize that there is a discontinuity in the boundary conditions at the
two corners of the cavity. Note that velocity v1 changes abruptly from zero value to one. Consequently,
a refined mesh can be used within this zone in order to catch better the velocity change therefore
providing a more accurate computation. For pressure, a smoother field is obtained.

2.2

The script mainNavierStokes.m is used to solve the Navier-Stokes equation with Picard method. o do
this a MatLAB function was first created to incorporate the matrix terms arising from discretization
of the convective term as given in he problem statement. The Navier-Stokes equation is solved using
a structured mesh of Q2Q1 elements with 20 elements per side. The Reynolds number is varied as
Re = 100, 500, 1000, 2000.
For the first case of analysis, with Re = 100, 13 iterations are needed to converge.Figure 2.2(a) presents
the streamlines and Figure 2.2(b) the obtained pressure field. In comparison with the Stokes problem,
even though we obtain a similar pressure distribution in shape note that now the values of the pressure
at the two corners are quite different. In the case of the streamlines, it seems like the main vortex has
slightly moved to the right with respect to previous solutions.
In Figure 2.2(c&d) we collect the results for Re = 500. For this case, a total number of 29 iterations
are needed to achieve a solution with the desired tolerance. The pressure field looks similar than
before but one should note that the values at the two upper corners, where there is a discontinuity
in the boundary condition, have changed. They are low now (in absolute value). Related with the
streamlines, we can see that the main vortex has moved its position and is now slightly more centered
than before. Further, another vortex starts to appear on the lower right corner of the domain.

4

-15

1

-10

-5

0.8
1

0

5

0.6 0.8

10

0.60.4

15

0.4
0.2

0.2

0 0

2.2(a)Streamlines Re = 100 2.2(b)Pressure field Re = 100

-2

1

-1

0.8

0

1

1

0.6 0.8

2

3

0.60.4

4

0.4
0.2

0.2

0 0

2.2(c)Streamlines Re = 500 2.2(d)Pressure field Re = 500

-1

1

-0.5

0

0.8

0.5

1

1

0.6 0.8

1.5

2

0.60.4

2.5

0.4
0.2

0.2

0 0

2.2(e)Streamlines Re = 1000 2.2(f)Pressure field Re = 1000

-1500

1

-1000

-500

1

0

500

0.8
0.5

1000

0.6

1500

0.4

0.2

0 0

2.2(g)Streamlines Re = 2000 2.2(h)Pressure field Re = 2000

5

Now some discussion on the results for Re = 1000 presented in figure 2.2(e&f). Again, a reduction
in the absolute value of the pressure is noticed, i.e. there is more suction in this case. Note that
the value of the pressure in the center of the domain has decreased too. For the streamlines, the
distribution is quite similar to previous case, with the main vortex centered and another one appearing
on the lower right corner.
Finally, for the case of Re = 2000, the pressure again decreases not only on the corners but also on
the center of the mesh. Moreover in the case of the streamlines, we observe the appearance of a third
vortex on the lower left corner added to the two previous ones. In addition, the main vortex is even
more centered now. For this case, 69 iterations are needed to achieve convergence.
As a conclusion, we state that increasing the Reynolds number in the computations, i.e. going to a
more turbulent flows, derives into a decrease in the absolute values of the pressure field (more suction).
Further, the main vortex of the velocity moves towards the center of the cavity, and a second vortex
appears on the lower right corner and even a third vortex starts to come up in the lower left corner. This
is because the flow becomes more turbulent. It is expected that, if we keep increasing the Re number,
we would reach a point where the standard Galerkin formulation provides meaningless solutions and
thus, a stabilized formulation would be required.

2.3

In this last section of exercise we have to write a code to solve the Cavity Flow problem with Navier-
Stokes equations using Newton-Raphson method. And vary the Reynolds number as earlier, and
compare the results obtained in earlier section using Picard Method.
The method is simple to code and computationally cheap, but has been known to fail or converge
slowly. The Newton method is more complex and expensive (on a pre-iteration basis) than Picard.

0 100 500 1000 1500 2000

Reynold's Number

0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Picard

Newton Raphson

6

ConvectionMatrix.m

1 function C = ConvectionMatrix(X,T,referenceElement ,velo)
2 %%%
3 % This function computes the matrix arising from the discretization
4 % of c(w,v,v) needed for the solution of Navier -Stokes
5 %
6 % Input:
7 % X --> nodal coordinates
8 % T --> connectivity matrix
9 % referenceElement --> data structure containing shape functions ,
10 % derivatives , Gauss points , etc ...
11 % velo --> initial velocity
12 %
13 % Output:
14 % C --> convection matrix
15 %%
16
17 % Extract local information
18 N = referenceElement.N;
19 Nxi = referenceElement.Nxi;
20 Neta = referenceElement.Neta;
21 wgp = referenceElement.GaussWeights;
22 nnodes = referenceElement.ngeom;
23 ngaus = referenceElement.ngaus;
24
25 [numel ,nen] = size(T); % Total number of elements and nodes per element
26 numnp = size(X,1); % Nodes in the mesh
27 ndofn = 2*nen; % Dof 's per node
28 nunk = 2* numnp; % Total number of dof 's in the mesh
29
30 C = zeros(nunk , nunk);
31 for ielem = 1:numel % Loop over elements
32
33 Te = reshape ([2*T(ielem ,:) -1; 2*T(ielem ,:)],1,ndofn);
34 Xe = X(T(ielem ,1: nnodes) ,:); % nodal coordinates of current

element
35 Ve = velo(T(ielem ,:) ,:); % velocity on nodes of current element
36 Ce = zeros(ndofn ,ndofn); % initalize elemental matrix
37
38 for igaus = 1:ngaus % Loop on Gauss points
39
40 % Shape functions
41 N_igaus = N(igaus ,:);
42 Nxi_igaus = Nxi(igaus ,:);
43 Neta_igaus = Neta(igaus ,:);
44
45 % Compute jacobian of the transformation
46 J = [Nxi_igaus (1: nnodes)*(Xe(1:nnodes ,1)) Nxi_igaus (1:

nnodes)*(Xe(1: nnodes ,2))
47 Neta_igaus (1: nnodes)*(Xe(1:nnodes ,1)) Neta_igaus (1:

nnodes)*(Xe(1: nnodes ,2))];
48

7

49 dvolu=wgp(igaus)*det(J);
50 % Matrix with derivatives of shape functions
51 B = J\[Nxi_igaus;Neta_igaus];
52 % Shape functions in 2D
53 Ngp = [reshape ([1;0]* N_igaus ,1,ndofn); reshape ([0;1]* N_igaus ,1,

ndofn)];
54 % Derivatives
55 Nx = [reshape ([1;0]*B(1,:) ,1,ndofn); reshape ([0;1]*B(1,:) ,1,

ndofn)];
56 Ny = [reshape ([1;0]*B(2,:) ,1,ndofn); reshape ([0;1]*B(2,:) ,1,

ndofn)];
57 % Velocity on point igaus
58 v_igaus = N_igaus * Ve;
59 Ce = Ce + Ngp '*(v_igaus (1)*Nx+v_igaus (2)*Ny)*dvolu; % elemental

matrix
60 end
61 C(Te ,Te) =C(Te,Te) + Ce; % Assembly
62 end
63 end

8

