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1. Transport Problem 
 

① Introduction  

The actin filaments and monomers densities (𝐹 and 𝐺) are modelled by the following coupled system of 

partial differential equations: 

 

𝜕𝐹

𝜕𝑡
= −𝒖 ∙ 𝛁𝐹 + 𝐷𝐹𝛁2𝐹 − 𝜎𝐹𝐹           𝑖𝑛 (0, 𝑇) × Ω 

𝜕𝐺

𝜕𝑡
= 𝐷𝐺𝛁2𝐺 − 𝜎𝐺𝐺 + �̂�𝐺𝐹𝐹           𝑖𝑛 (0, 𝑇) × Ω 

 

Where 𝒖 is the fluid velocity and the following material parameters are used: 

 

𝐷𝐹 = 5𝜇𝑚/𝑠, 𝜎𝐹 = 0.25𝑠−1, 𝐷𝐺 = 15𝜇𝑚/𝑠, 𝜎𝐺 = 2𝑠−1, �̂�𝐺𝐹 = 0.5𝑠−1 

 

Boundary conditions: 

 

a. The filament density is constant at the upper boundary: 𝐹(𝑟 = 25) = 80𝜇𝑀 

b. No flux boundary conditions are considered for 𝐹 everywhere else and for 𝐺 on the entire boundary 

 

Velocity field: 

Consider a velocity field, where 𝒖(𝑥, 𝑦) = −
1

1500
(𝑟𝑥, 𝑟𝑦) 𝜇𝑚/𝑠, where (𝑥, 𝑦) are the points coordinates 

and  

𝑟 = √𝑥2 + 𝑦2  

 

Initial conditions: 

 𝐹(𝑥, 𝑦)|𝑡=0 = 80𝜇𝑀     𝑖𝑛 Ω 

𝐺(𝑥, 𝑦)|𝑡=0 = 0    𝑖𝑛 Ω 

 

From above equations, we can find that the procedures for solving this problem should be: 

Solving the unsteady convection diffusion reaction problem about 𝐹. Then turn to solving the 𝐺 by using 

the result of 𝐹.  

 

② Derivation and Implementation  

 

In this problem, we can find that both equations are time dependent, so finding appropriate time scheme is 

essential for getting the precise results. As a result, I have chosen the Crank-Nicolson method, which is 

unconditionally stable and has second order accuracy. Because the results are stable and no oscillations 



happened here, so the stabilization technics have not been implemented. 

 

The discretized time schemes are as following: 

 

Δ𝐹

Δ𝑡
+

1

2
(𝒖 ∙ 𝛁 − 𝐷𝐹𝛁2 + 𝜎𝐹)Δ𝐹 = −(𝒖 ∙ 𝛁 − 𝐷𝐹𝛁2 + 𝜎𝐹)𝐹𝑛 

Δ𝐺

Δ𝑡
+

1

2
(𝐷𝐺𝛁2 + 𝜎𝐺)Δ𝐺 =

1

2
(𝑠𝑛+1 + 𝑠𝑛) − (𝐷𝐺𝛁2 + 𝜎𝐺)𝐺𝑛 

𝑠 = �̂�𝐺𝐹𝐹 

 

For spatial discretization, we can apply Galerkin method: 

 

For 𝑭: 

                              ∫ 𝜔 ∙
Δ𝐹

Δ𝑡
+

1

2
∫ 𝜔(𝒖 ∙ 𝛁)(Δ𝐹) +

1

2
𝐷𝐹 ∫ 𝛁𝜔 ∙ 𝛁(Δ𝐹) +

1

2
∫ 𝜔 𝜎𝐹Δ𝐹                                       

= − ∫ 𝜔(𝒖 ∙ 𝛁)(𝐹𝑛) − 𝐷𝐹 ∫ 𝛁𝜔 ∙ 𝛁(𝐹𝑛) − ∫ 𝜔 𝜎𝐹𝐹𝑛   ,   𝑖𝑛  Ω    and  𝜔 = 0 𝑜𝑛  ∂Ω  

For 𝑮: 

                             ∫ 𝑣 ∙
Δ𝐺

Δ𝑡
+

1

2
𝐷𝐺 ∫ 𝛁𝑣 ∙ 𝛁(Δ𝐺) +

1

2
∫ 𝑣 𝜎𝐺Δ𝐺                                    

=
1

2
∫ 𝑣(𝑠𝑛+1 + 𝑠𝑛) − 𝐷𝐺 ∫ 𝛁𝑣 ∙ 𝛁(𝐺𝑛) − ∫ 𝑣 𝜎𝐺𝐺𝑛   ,   𝑖𝑛  Ω    and  𝑣 = 0 𝑜𝑛  ∂Ω 

 

The results: 

 

I have chosen end time 𝑡 = 1𝑠. 

 
Figure 1. The filaments density field 

 

The figure 1 presents the actin filaments density. On the boundary 𝑟 = 25, we can find that the values are 

fixed, which is equal to 80𝜇𝑀. When 𝑟 decreases, the filaments density also decreases accordingly. On the 

boundary 𝑟 = 15, the filaments densities are about 55𝜇𝑀. 



 

 

Figure 2. The monomers density field 

 

③ Conclusion 

 

For unsteady convection problem, we need to choose the appropriate time scheme to consider the information 

transport along the characteristic lines.  

 

 

 

2. Stokes Problem 
 

 

① Introduction 

 

In this part, we need to solve the following stokes equations: 

 

𝜵 ∙ 𝝈 = 0     𝑖𝑛  𝛺  

𝜵 ∙ 𝒖 = 0     𝑖𝑛  𝛺 

𝒖 = 𝒖𝐷        𝑜𝑛 Γ𝐷 

 

Boundary conditions: 

𝑢𝑟(𝑟 = 15) = −0.15,    𝑢𝜃(𝑟 = 15) = 0 

𝑢𝑟(𝑟 = 25) = −0.30,    𝑢𝜃(𝑟 = 25) = 0 

 

And zero traction on the straight sides of the boundary. 

Consider a viscosity 𝜈 = 103𝑝𝑁 ∙ 𝑠/𝜇𝑚. 

 

This is a steady stokes problem without source term. We have several difficulties in this problem to get the 

precise solution: 

First, this is a nonlinear system in which the velocity and pressure are coupled. Then, the selection of elements 

for velocity and pressure will also influence the results. Because the elements should satisfy the LBB condition 



such that the problem has unique solution. If we don’t choose the LBB elements, what we need to do is that 

applying stabilization technics here to get the solution.  

 

② Derivation and Implementation  

 

In order to get the weak form of the stokes equations, we firstly need to use the constitutive equation, Cauchy 

stress 𝝈, which is related to velocity and pressure like Stokes law:  

 

𝝈 = −𝑝𝑰 + 2𝜇𝛁𝒔𝒖 

 

We replace the 𝝈 in the stokes equations, then get: 

 

−ν𝛁2𝒖 + 𝛁𝑝 = 0       𝑖𝑛 Ω 

𝜵 ∙ 𝒖 = 0     𝑖𝑛  𝛺 

𝒖 = 𝒖𝐷        𝑜𝑛 Γ𝐷 

 

Neumann boundary condition is not considered in this problem. 

Multiplying the velocity test function 𝝎 and the pressure test function 𝑞, we can get: 

 

∫ 𝜈∇𝝎: ∇𝒖 + ∫ 𝝎 ∙ ∇𝑝 = 0     𝑖𝑛 Ω, ∀𝝎 ∈ 𝐻Γ𝐷

1 (Ω) 

∫ 𝑞  𝜵 ∙ 𝒖 = 0     𝑖𝑛 Ω,     ∀𝑞 ∈ 𝐿2(Ω) 

𝒖 = 𝒖𝐷        𝑜𝑛 Γ𝐷 

 

Where: 

𝐻Γ𝐷

1 (Ω) = {𝒗 ∈ 𝐻1(Ω)| 𝒗 = 0 𝑜𝑛 Γ𝐷} 

 

After discretization, we can get the following system: 

 

[𝑲 𝑮𝑻

𝑮 𝟎
] [

𝒖
𝒑] = [𝟎] 

 

Where 

 

𝑲: ∫ 𝜈∇𝝎𝒉: ∇𝒖𝒉 

𝑮: ∫ 𝑞ℎ  𝜵 ∙ 𝒖𝒉 

 

This problem has unique solution if 𝑘𝑒𝑟(𝑮) = 0, or 𝑮𝑻𝑲−𝟏𝑮. The condition 𝑘𝑒𝑟(𝑮) = 0 holds when the 

spaces chosen for the velocity and pressure satisfy the LBB condition. 

Where LBB condition is as following: 

 

∀𝑞ℎ ∈ ℱℎ    ∃𝜔ℎ ∈ ℳℎ, 𝜔ℎ ≠ 0: (𝑞ℎ, 𝛁 ∙ 𝜔ℎ) ≥ 𝛼 ∥ 𝑞ℎ ∥0∥ 𝜔ℎ ∥1 

 

If the LBB condition is not satisfied, we need to use stabilization techniques. 

 

 



The result: 

 

a. The results without stabilization 

 

Figure 3. The stream line of the stokes problem without GLS 

 

Figure shows the stream line of this problem. The velocity field on the boundaries 𝑟 = 15 and 𝑟 = 25 

satisfy the boundary conditions. 

 

 

Figure 4. The velocity field on X direction of the stokes problem without GLS 

 

Figure shows the velocity field on horizontal direction. The highest value happens on the middle areas of the 

vertical boundaries. However, the velocity solution on horizontal direction is not stable. 

 



 

Figure 5. The velocity field on Y direction of the stokes problem without GLS 

 

Figure shows the velocity field on vertical direction. The highest value happens on the boundary 𝑟 = 25. 

Like the solution on the horizontal direction, the velocity solution on the vertical direction is also not stable. 

 

 

Figure 6. The pressure field of the stokes problem without GLS 

 

From above figure, it’s clear that the pressure field result is not stable and the oscillations happen in the whole 

domain. 

The reason why the instabilities happen in both velocity and pressure fields is that I have used Q1Q1 element 

which is not satisfying the LBB condition, meaning that the stabilization is needed here. In next part, I have 

implemented the GLS stabilization method. 

 

 

 



b. The results with GLS method 

 

i. The GLS method used in stokes equations 

 

According to the lecture of professor Ramon Codina, the GLS method here can be expressed as: 

 

ν(𝛁𝒖ℎ, 𝛁𝝎ℎ) + (𝛚, 𝛁𝑝ℎ) + (𝑞ℎ, 𝛁 ∙ 𝒖ℎ) + ∑ ∫ 𝜏1(−𝜈𝚫𝝎ℎ + 𝛁𝑞ℎ)(−𝜈𝚫𝑢ℎ + 𝛁𝑝ℎ)
𝐾𝐾

+ ∑ ∫ 𝜏2
𝐾𝐾

(𝛁 ∙ 𝝎ℎ)(𝛁 ∙ 𝒖ℎ) = 0 

 

Because we have used the linear element and we assume that 𝜏2 = 0, so we get: 

 

𝚫𝝎ℎ = 0, 𝚫𝑢ℎ = 0  𝑎𝑛𝑑  𝜏2 = 0 

 

So the equation becomes: 

 

ν(𝛁𝒖ℎ, 𝛁𝝎ℎ) + (𝛚, 𝛁𝑝ℎ) = 0 

(𝑞ℎ, 𝛁 ∙ 𝒖ℎ) + ∑ ∫ 𝜏1𝛁𝑞ℎ ∙ 𝛁𝑝ℎ
𝐾𝐾

= 0 

 

Then we get the following stabilized system: 

 

[𝑲 𝑮𝑻

𝑮 𝑳
] [

𝒖
𝒑] = [𝟎] 

 

Where the 𝑳 represents the GLS stabilization. 

 

b. The results 

 



Figure 7. The stream line of the stokes problem with GLS 

 

Figure shows the stream line of this problem. The velocity field on the boundaries 𝑟 = 15 and 𝑟 = 25 

satisfy the boundary conditions. 

 

 

Figure 8. The velocity field on X direction of the stokes problem with GLS 

 

Figure shows the velocity field on horizontal direction. The highest value happens on the middle areas of the 

vertical boundaries. And the instability disappears after implementing the stabilization method. 

 

Figure 9. The velocity field on Y direction of the stokes problem with GLS 

 

Figure shows the velocity field on vertical direction. The highest value happens on the boundary 𝑟 = 25 

and result becomes stable. 



 

Figure 10. The pressure field of the stokes problem with GLS 

 

As we can see, applying the GLS stabilization technique has successfully solved the oscillation of pressure 

field. And the highest value of pressure happens on the middle areas of the boundaries 𝑟 = 15 and 𝑟 = 25. 

 

③ Conclusion 

 

For stokes problem, the velocity and the pressure are coupled, which brings us the difficulties. Choosing the 

appropriate elements here is an essential task that we need to consider carefully. The element which is not 

satisfying the LBB condition like Q1Q1 we have used above might be easy to implement, but the stabilization 

techniques should be applied. Another choice is that we can use the element satisfying the LBB condition, like 

Q2Q1.  

 

 

3. The coupled problem 
 

① Introduction 

 

The third problem can be expressed as following equations: 

 

ν𝛁 ∙ (𝛁𝒔𝒖) + 𝛁 ∙ 𝝈𝒎(𝐹) + 𝑻𝒎(𝒖) = 𝟎            𝑖𝑛 (0, 𝑇) × Ω 

𝜕𝐹

𝜕𝑡
= −𝒖 ∙ 𝛁𝐹 + 𝐷𝐹𝛁2𝐹 − 𝜎𝐹𝐹           𝑖𝑛 (0, 𝑇) × Ω 

𝜕𝐺

𝜕𝑡
= 𝐷𝐺𝛁2𝐺 − 𝜎𝐺𝐺 + �̂�𝐺𝐹𝐹           𝑖𝑛 (0, 𝑇) × Ω 

 

Where 𝝈𝒎 and 𝑻𝒎 are surface forces on the leading edge. These two terms can be gotten from the function 

boundaryMatrices.m. The parameters are same to the first problem. 

 



② Derivation and Implementation  

 

In the first equation, the term is equal to: 

 

𝛁𝒔𝒖 =
1

2
(𝛁𝒖 + 𝛁𝒖𝑻) 

 

After multiplying the test function and integration by parts, we finally get: 

 

First equation: 

 

1

2
𝜈（∫ 𝛁𝝎 ∙ 𝛁𝒖 + ∫(𝛁 ∙ 𝛚)(𝛁 ∙ 𝒖)) + ∫ 𝝎𝛁 ∙ 𝝈𝒎(𝐹) + ∫ 𝝎 𝑻𝒎(𝒖) = 𝟎  , ∀𝝎 ∈ 𝐻Γ𝐷

1 (Ω) 

 

𝐻Γ𝐷

1 (Ω) = {𝒗 ∈ 𝐻1(Ω)| 𝒗 = 0 𝑜𝑛 Γ𝐷} 

 

For 𝑭: 

                              ∫ 𝜔 ∙
Δ𝐹

Δ𝑡
+

1

2
∫ 𝜔(𝒖 ∙ 𝛁)(Δ𝐹) +

1

2
𝐷𝐹 ∫ 𝛁𝜔 ∙ 𝛁(Δ𝐹) +

1

2
∫ 𝜔 𝜎𝐹Δ𝐹                                       

= − ∫ 𝜔(𝒖 ∙ 𝛁)(𝐹𝑛) − 𝐷𝐹 ∫ 𝛁𝜔 ∙ 𝛁(𝐹𝑛) − ∫ 𝜔 𝜎𝐹𝐹𝑛   ,   𝑖𝑛  Ω    and  𝜔 = 0 𝑜𝑛  ∂Ω  

 

For 𝑮: 

                             ∫ 𝑣 ∙
Δ𝐺

Δ𝑡
+

1

2
𝐷𝐺 ∫ 𝛁𝑣 ∙ 𝛁(Δ𝐺) +

1

2
∫ 𝑣 𝜎𝐺Δ𝐺                                    

=
1

2
∫ 𝑣(𝑠𝑛+1 + 𝑠𝑛) − 𝐷𝐺 ∫ 𝛁𝑣 ∙ 𝛁(𝐺𝑛) − ∫ 𝑣 𝜎𝐺𝐺𝑛   ,   𝑖𝑛  Ω    and  𝑣 = 0 𝑜𝑛  ∂Ω 

 

As we can see, the 𝐹 and 𝒖 are coupled in the first and second equations. Here I have considered two ways 

to solve it. One is using serial scheme, meaning that we solve 𝐹 and 𝒖 serially. Another method is using the 

method we have implemented in stokes equation. The situation is similar, because in stokes equations the 

velocity and pressure are coupled. 

 

a.Serial method 

 

The step is: we use 𝒖𝑖 to compute 𝐹1
𝑖+1 using the second equation, then we can apply iterative method in 

each time step, using  𝐹𝑗
𝑖+1 to get  𝒖𝑗

𝑖+1 until we get the satisfied results. 

 

The results: 

 

I have chosen end time 𝑡 = 1𝑠. 

 



 

Figure 11. The filaments density field of coupled problem (first application) 

 

 

Figure 12. The monomers density field of coupled problem (first application) 

 

But this method is totally wrong. I find that the velocity in each step doesn’t change. This is because that, in 

my application, once we calculate the Δ𝐹 from 𝒖 using the second equation, the results will automatically 

satisfy the first equation. Then, the circulation will appear. As a result, we get the results of using the same 

velocity field. 

 

I applied the second way, then the results are like following: 

 



 

Figure 13. The filaments density field of coupled problem (second application) 

 

 

Figure 14. The monomers density field of coupled problem (second application) 

 

As we can see, the results are not very well, especially for 𝐹. 

 

b.Picard Method 

Still working on it. 


