
Finite Element in Fluids. Assignment Part II

Adrià Galofré

May 22nd 2017

1 Problem Statement.

The cavity flow problem is a standard benchmark test for compressible flows.
The figure below shows a schematic representation of the problem setting.
The goal of this exercise is to analyze the results obtained when adopt-
ing either the Stokes or the Navier-Stokes equations. Use the code in file
in (HW2FilesCavity.zip) to compute the finite elements approximation of
these problems and answer the questions below

Figure 1: Problem Domain Statement

1

2 Questions.

2.1 Use the script mainStokes.m to compute the solution of
the Stokes problem using a uniform, structured mesh of
Q2Q0, Q2Q1, P1P1 and MINI (P+1P1) elements, with 20
elements per side. Comment on the results.

The results presented next shows the different solutions for the different
pairs of velocity/pressure discretisation proposed.
The first important fact to remark is that according to the course slides not
all the pairs given are admissible, so we should expect irregularities on for
Q2Q0 and P1P1.
First results presented are the ones with multiquadratic approximations.
It can be easily observed how the solution for the first pair, Q2Q0, is not
continuous. As shown increasing the degree of the pressure approximation
from picewise constant to multiliniear a continuous solution is obtain for the
whole domain.

(a) Q2Q0 Velocity distribution. (b) Q2Q0 Pressure solution.

(c) Q2Q1 Velocity distribution. (d) Q2Q1 Pressure solution.

Figure 2: Results for Q2Q0 and Q2Q1 (Multiquadratic velocity).

2

Also two pairs with linear velocity have been tested. The results obtain
are shown in the image below.
The first thing noticed is that for the pair P1P1 some inestabilities, node-
to-node oscillations, are obtained. To overcome this problem but continue
using a linear velocity element, an internal enrichment with bubble func-
tions is used. As observed the results with this enriched element provides a
continuous and more stable solution.

(a) P1P1 Velocity distribution. (b) P1P1 Pressure solution.

(c) MINI(P+1P1) Velocity distribu-
tion.

(d) MINI(P+1P1) Pressure solution.

Figure 3: Results obtained for P1P1 and MINI(P+1P1) (Linear velocity)

3

2.2 Compute the solution of the Stokes problem considering
(i) a structured, uniform mesh of Q2Q1 elements with 20
elements per side (ii) a structured mesh of 20x20 Q2Q1
elements refined near the walls. Comment on the results.
Describe the main properties of the velocity and pressure
fields. Are there any differences between the solutions
obtained with these two meshes? Which one do you
thinks the best? Why?

The same problem has been solved but now, as proposed we have used ele-
ment Q2Q1 in other to see the influence of refining the mesh at the bound-
aries.
The image below shows the different meshes used:20x20 elements and struc-
tured. But one has an homogeneous distribution over the whole domain
while the other one has more elements near the boundaries.

(a) Structured homogeneus velocity
mesh.

(b) Structures refined over the bound-
aries mesh.

(c) Strucured homogeneus pressure
mesh.

(d) Structured refined over the bound-
aries mesh.

Figure 4: Different meshes used in the anaylisis.

4

(a) Velocity distribution. Homogeneous
mesh.

(b) Velocity distribution refined mesh.

(c) Pressure solution homogeneous
mesh.

(d) Pressure solution refined mesh.

Figure 5: Results for the different type of meshes.

The results obtained show how this fact influences the solution obtained:
For the velocity we get the same results (but distributed according to the
elements distribution, of course). But is important to note how the insta-
bilities that appeared in the pressure solution (which are in the boundaries)
are now more refined so it allows us to get a more accurate solution over
most of the domain.

2.3 Modify the Stokes code to solve the problem using a
GLS stabilized formulation with P1P1 elements. De-
scribe the formulation you are using and the choice of
the stabilization parameter. Is the method behaving as
expected?

The GLS has been implemented using the formulation described next.
The artificial diffusion added to the strong form of the problem is defined

5

as follows:

Which for the GLS stands:

It is interesting to note that differently from other similar formulations
like SUPG this artificial diffusion is symmetric and amplifies the Galerkin
instabilities by . It has to be said that since we’re working with linear ele-
ments and also with a no-reaction problem this terms won’t affect the result
(those terms can be neglected from the artificial diffusion). The stabiliza-
tion parameter τ can take any value, but a good estimator of an optimal
value for it was proposed by Shakib, Hughes and Johan (1991) defined by
the expression:

Which in this case will depend on the mesh (h), the convective parameter
(a) and the Péclet number (Pe).
As observed in the results shown in the next images we solved the instability
problems obtained without stabilization techniques, but the GLS introduces
too crosswind diffusion.

6

(a) Pressure distribution without GLS. (b) Pressure distribution with GLS.

(c) Streamlines without GLS. (d) Streamlines with GLS.

(e) Velocity distribution without GLS. (f) Velocity distribution with GLS.

Figure 6: Results comparision with/without using GLS stabilization tech-
nique.

7

2.4 Solve the Navier-Stokes equations using a structured
mesh of Q2Q1 elements with 20 elements per side. Con-
sider the Reynolds numbers Re = 100; 500; 1000; 2000
and comment on the results. In particular, discuss the
number of iterations needed to achieve convergence, the
evolution of the pressure field, the position and strength
of the main vortex of the velocity. Compare your results
with the ones given in literature.

In order to solve the Navier-Stokes equations with the code provided, as
explained in the assignment we first have to write the Matlab function Con-
vectionMatrix.m to evaluate the matrix arising from the discretisation of the
convective term:

A copy of the function implemented is provided in the Annex for more
details.
The discretization of the problem has been done with the mesh of 20x20.
The convergence of the iterative solver for the different Reynolds numbers
are:

As seen in the figure, the Reynolds number increases the iterations and
specially the computation time required to converge increases. Despite we
have reach convergence with all the Reynolds numbers proposed, it is some-
thing to take into account and think of strategies to reduce the compu-
tational cost of solving the problem with a high Reynolds number. One
strategy, may be to use a coarser mesh so one will lose accuracy but will get
a gain in the performance.

8

(a) Re=100
(b) Re=500

(c) Re=1000 (d) Re=2000

Figure 7: Pressure solution for the different Reynold numbers.

The behaviour observed in the results is due to the higher the Reynolds
number is, the more imporance the intertial forces has. That is the higher
pressure is applied to the fluid. In the image below, the streamlines have
been also presented:

9

(a) Re=100 (b) Re=500

(c) Re=1000
(d) Re=2000

(e) Streamlines for different Reynolds numbers.

10

3 Anex. Matlab Code

3.1 GLS mainStokes.m

This program s o l v e s the 2D cav i ty f low Stokes problem

c l e a r ; c l o s e a l l ; c l c

addpath (’ Func ReferenceElement ’)

dom = [0 , 1 , 0 , 1] ;

% Element type and i n t e r p o l a t i o n degree
% (0 : q u a d r i l a t e r a l s , 1 : t r i a n g l e s , 11 : t r i a n g l e s with bubble func t i on)

% %Q2Q0
% elemV = 0 ; degreeV = 2 ;
% elemP = 0 ; degreeP = 0 ;
% %Q2Q1
% elemV = 0 ; degreeV = 2 ;
% elemP = 0 ; degreeP = 1 ;
% %P1P1
% elemV = 1 ; degreeV = 1 ;
% elemP = 1 ; degreeP = 1 ;
% %MINI(P1+,P1)
% elemV = 11 ; degreeV = 1 ;
% elemP = 1 ; degreeP = 1 ;
%P1 , P1
elemV = 1 ; degreeV = 1 ;
elemP = 1 ; degreeP = 1 ;

%method=0; %without GLS s t a b i l i z a t i o n
method=1; %With GLS s t a b i l i t z a t i o n

% elemV = 1 ; degreeV = 2 ; degreeP = 1 ;

11

% elemV = 11 ; degreeV = 1 ; degreeP = 1 ;
%i f elemV == 11
% elemP = 1 ;
%e l s e
% elemP = elemV ;
%end
re f e renceElement = SetReferenceElementStokes (elemV , degreeV , elemP , degreeP) ;

%nx = cinput (’ Number o f e lements in each d i r e c t i o n ’ , 2 0) ;
nx=20;
ny = nx ;
h=(1/ny) ;
adapted = cinput (’ Uniform s t ruc tu r ed mesh (0)/ Structured mesh Ref ined at boundar ies (1) ’ , 0) ;
[X,T,XP,TP] = CreateMeshes (dom, nx , ny , re ferenceElement , adapted) ;

f i g u r e ; PlotMesh (T,X, elemV , ’ b− ’) ;
f i g u r e ; PlotMesh (TP,XP, elemP , ’ r − ’) ;

%example v a r i a b l e
example . ve l o = [1 , 0] ;
example . a = 1 ;
example . nu = 1e−3;
example . sigma =0;
%example . r e a c t i o n=1e−3;
example . h=h ;
example . tau =(1/12)∗(hˆ2/ example . nu) ;
example . method=method ;

% Matr ices a r i s i n g from the d i s c r e t i z a t i o n
[K,G, f , Lap , fP] = StokesSystem (X,T,XP,TP, re ferenceElement , example) ;
[ndofP , ndofV] = s i z e (G) ;

[dofDir , valDir , dofUnk , con f ined] = BC red (X, dom, ndofV) ;
nunkV = length (dofUnk) ;
i f method==0

i f con f ined
nunkP = ndofP−1;
d i sp (’ ’)
d i sp (’ Confined f low . Pressure on lower l e f t corner i s s e t to zero ’) ;
G(1 , :) = [] ;

12

e l s e
nunkP = ndofP ;

end
e l s e i f method==1

i f con f ined
nunkP = ndofP−1;
d i sp (’ ’)
d i sp (’ Confined f low . Pressure on lower l e f t corner i s s e t to zero ’) ;
G(1 , :) = [] ;
Lap (1 , :) = [] ;
Lap (: , 1) = [] ;
fP (1 , :) = [] ;

e l s e
nunkP = ndofP ;

end
end

f = f − K(: , dofDir)∗ va lDir ;
Kred = K(dofUnk , dofUnk) ;
Gred = G(: , dofUnk) ;
f r e d = f (dofUnk) ;

i f method==0
A = [Kred Gred ’ ;

Gred ze ro s (nunkP)] ;
b = [f r e d ; z e r o s (nunkP , 1)] ;

e l s e i f method ==1
A = [Kred Gred ’ ;

Gred Lap] ;
b = [f r e d ; fP] ;

end

s o l = A\b ;

ve lo = ze ro s (ndofV , 1) ;
ve l o (dofDir) = va lDir ;
ve l o (dofUnk) = s o l (1 : nunkV) ;
ve l o = reshape (velo , 2 , []) ’ ;
p res = s o l (nunkV+1:end) ;

13

i f con f ined
pres = [0 ; pres] ;

end

nPt = s i z e (X, 1) ;
f i g u r e ;
qu iver (X(1 : nPt , 1) ,X(1 : nPt , 2) , ve l o (1 : nPt , 1) , ve l o (1 : nPt , 2)) ;
hold on
p lo t (dom([1 , 2 , 2 , 1 , 1]) , dom([3 , 3 , 4 , 4 , 3]) , ’ k ’)
a x i s equal ; a x i s t i g h t

P lo tSt r eaml ine s (X, velo , dom) ;

i f degreeP == 0
PlotResu l t s (X,T, pres , r e f e renceElement . elemP , re f e renceElement . degreeP)

e l s e
P lo tResu l t s (XP,TP, pres , r e f e renceElement . elemP , re f e renceElement . degreeP)

end

3.2 GLS EleMatStokesGLS.m

f unc t i on [Ke , Ge , fe , Lape , fPe] = EleMatStokes GLS (Xe , ngeom , nedofV , nedofP , ngaus , wgp ,N, Nxi , Neta ,NP, NPxi , NPeta , tau)
% [Ke , Ge , f e] = EleMatStokes (Xe , ngeom , nedofV , nedofP , ngaus , wgp ,N, Nxi , Neta ,NP)

Ke = ze ro s (nedofV , nedofV) ;
Ge = ze ro s (nedofP , nedofV) ;
f e = ze ro s (nedofV , 1) ;
fPe = ze ro s (nedofP , 1) ;
Lape=ze ro s (nedofP , nedofP) ;
% Loop on Gauss po in t s
f o r i g = 1 : ngaus

N ig = N(ig , :) ;
Nx i i g = Nxi (ig , :) ;
Neta ig = Neta (ig , :) ;
NP ig = NP(ig , :) ;
NPxi ig = NPxi (ig , :) ;
NPeta ig = NPeta (ig , :) ;

Jacob = [
Nx i i g (1 : ngeom)∗ (Xe (: , 1)) Nx i i g (1 : ngeom)∗ (Xe (: , 2))

14

Neta ig (1 : ngeom)∗ (Xe (: , 1)) Neta ig (1 : ngeom)∗ (Xe (: , 2))] ;

dvolu = wgp(i g)∗ det (Jacob) ;
r e s = Jacob \ [Nx i i g ; Neta ig] ;
resP = Jacob \ [NPxi ig ; NPeta ig] ;

nx = r e s (1 , :) ;
ny = r e s (2 , :) ;
nxP = resP (1 , :) ;
nyP = resP (2 , :) ;

Ngp = [reshape ([1 ; 0] ∗ N ig , 1 , nedofV) ; reshape ([0 ; 1] ∗ N ig , 1 , nedofV)] ;
% Gradient
Nx = [reshape ([1 ; 0] ∗ nx , 1 , nedofV) ; reshape ([0 ; 1] ∗ nx , 1 , nedofV)] ;
Ny = [reshape ([1 ; 0] ∗ ny , 1 , nedofV) ; reshape ([0 ; 1] ∗ ny , 1 , nedofV)] ;
% Divergence
dN = reshape (res , 1 , nedofV) ;

%tau =0;
%tau =2.0833e−04;
Ke = Ke + (Nx’∗Nx+Ny’∗Ny)∗ dvolu ;
Ge = Ge − NP ig ’∗dN∗dvolu ;
Lape=Lape − tau ∗(nxP ’∗nxP+nyP ’∗nyP)∗ dvolu ;
x i g = N ig (1 : ngeom)∗Xe ;
f i g a u s = SourceTerm (x i g) ;
f e = f e + Ngp ’∗ f i g a u s ∗dvolu ;
fPe = fPe − tau ∗(nxP ’∗ f i g a u s (1)+nyP ’∗ f i g a u s (2))∗ dvolu ;

end

3.3 ConvectionMatrix.m

f unc t i on C = ConvectionMatrix (X,T, re ferenceElement , ve l o)

elem = re fe renceElement . elemV ;
ngaus = re fe renceElement . ngaus ;
wgp = re fe renceElement . GaussWeights ;
N = re fe renceElement .N;

15

Nxi = re fe renceElement . Nxi ;
Neta = re fe renceElement . Neta ;
ngeom = re fe renceElement . ngeom ;

% Number o f e lements and number o f nodes in each element
[nElem , nenV] = s i z e (T) ;

% Number o f nodes
nPt V = s i z e (X, 1) ;
i f elem == 11

nPt V = nPt V + nElem ;
end

% Number o f degree s o f freedom
nedofV = 2∗nenV ;
ndofV = 2∗nPt V ;

C = ze ro s (ndofV , ndofV) ;

% Loop on elements
f o r i e l em = 1 : nElem

% Global number o f the nodes in element ie l em
Te = T(ielem , :) ;
% Degrees o f freedom in element ie l em
Te dof = reshape ([2∗Te−1; 2∗Te] , 1 , nedofV) ;
% Coordinates o f the nodes in element ie l em
Xe = X(Te (1 : ngeom) , :) ;
% Ve loc i ty at the nodes
Ve = ve lo (Te , :) ;
% Element matrix
Ce = EleConvMatrix (Ve , Xe , ngeom , nedofV , ngaus , wgp ,N, Nxi , Neta) ;

C(Te dof , Te dof) = C(Te dof , Te dof) + Ce ;
end
func t i on C = ConvectionMatrix (X,T, re ferenceElement , ve l o)

elem = re fe renceElement . elemV ;
ngaus = re fe renceElement . ngaus ;
wgp = re fe renceElement . GaussWeights ;

16

N = re fe renceElement .N;
Nxi = re fe renceElement . Nxi ;
Neta = re fe renceElement . Neta ;
ngeom = re fe renceElement . ngeom ;

% Number o f e lements and number o f nodes in each element
[nElem , nenV] = s i z e (T) ;

% Number o f nodes
nPt V = s i z e (X, 1) ;
i f elem == 11

nPt V = nPt V + nElem ;
end

% Number o f degree s o f freedom
nedofV = 2∗nenV ;
ndofV = 2∗nPt V ;

C = ze ro s (ndofV , ndofV) ;

% Loop on elements
f o r i e l em = 1 : nElem

% Global number o f the nodes in element ie l em
Te = T(ielem , :) ;
% Degrees o f freedom in element ie l em
Te dof = reshape ([2∗Te−1; 2∗Te] , 1 , nedofV) ;
% Coordinates o f the nodes in element ie l em
Xe = X(Te (1 : ngeom) , :) ;
% Ve loc i ty at the nodes
Ve = ve lo (Te , :) ;
% Element matrix
Ce = EleConvMatrix (Ve , Xe , ngeom , nedofV , ngaus , wgp ,N, Nxi , Neta) ;

C(Te dof , Te dof) = C(Te dof , Te dof) + Ce ;
end

17

	Problem Statement.
	Questions.
	Use the script mainStokes.m to compute the solution of the Stokes problem using a uniform, structured mesh of Q2Q0, Q2Q1, P1P1 and MINI (P+1P1) elements, with 20 elements per side. Comment on the results.
	Compute the solution of the Stokes problem considering (i) a structured, uniform mesh of Q2Q1 elements with 20 elements per side (ii) a structured mesh of 20x20 Q2Q1 elements refined near the walls. Comment on the results. Describe the main properties of the velocity and pressure fields. Are there any differences between the solutions obtained with these two meshes? Which one do you thinks the best? Why?
	Modify the Stokes code to solve the problem using a GLS stabilized formulation with P1P1 elements. Describe the formulation you are using and the choice of the stabilization parameter. Is the method behaving as expected?
	Solve the Navier-Stokes equations using a structured mesh of Q2Q1 elements with 20 elements per side. Consider the Reynolds numbers Re = 100; 500; 1000; 2000 and comment on the results. In particular, discuss the number of iterations needed to achieve convergence, the evolution of the pressure field, the position and strength of the main vortex of the velocity. Compare your results with the ones given in literature.

	Anex. Matlab Code
	GLS mainStokes.m
	GLS EleMatStokesGLS.m
	ConvectionMatrix.m

