UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

MSc. IN COMPUTATIONAL MECHANICS
FiNniTE ELEMENT METHODS IN FLuips (FEF)
SPRING SEMESTER 2017/2018

FINAL ASSIGNMENT

Submitted By:
Luan Malikoski Vieira

June 1, 2018
Barcelona, Spain

Contents

1__Introduction|
2__Problem I
2.1 Weak Formulation and solution method|. o000
P2 Resulfal. o o
3__Problem II
B.1 Weak Formulation and solution methodl.o
[3.1.1 Stabilized formulation for P1P1 interpolation|
B2 Resullsl. o o
4 Problem 11|
4.1 Weak Formulation and solution methodl.o 000
4.1.1 General Procedure: Iterative Method to solve the coupling u/F
4.1.2 Simplified Procedure to solve the coupling u/F|
B2 Resullsl. o oo e e
5 _Annex - Matl.ab Routines|

DO

1 Introduction

This report will cover the solution of the three proposed problems. Each problem will be discussed in
different sections. Each section will be composed by a brief explanation on the derivation of the weak
form of the governing equations and solution method. In last part, some results will be discussed.

Routines implemented in Matlab are in the Annex section. Only new created routines or routines
that had important modifications are present in the Annex in order to shorten the report.

2 Problem I

The following set of unsteady advection-diffusion-reaction partial differential equations governs the
problem in the time-space domain (0,T) x €:

aa—};:—U'VF—i—DFVZF—O'FF
%—f = DeV2G — 606G + 6 F

with u = —1/1500(rz, ry)um/s, Dp = 5um/s, op = 0.25s7', Dg = 15um/s, o = 2s~! and the
coupling constant 6gr = 0.55~ L. For F, Dirichlet boundary condition at the domain upper boundary is
imposed such that F' = 80u/N in I'p. Homogeneous Neumann boundary condition are imposed for all
other boundaries. For G, all boundary conditions are of Homogeneous Neumann type.

2.1 Weak Formulation and solution method

Here, the time integration technique implemented is the general formulation of the implicit Pade approx-
imations. After discretizing in time, applying the Galerkin Weighted residual method and integrating
the higher order derivative terms by parts (neglecting boundary terms), the weak form to be solved at
each time-step for F is found.

wEdQ +W {/ w(u- V)AFdQ + / Vw - (DpVAF)dQ + / waFAFdQ} =

—w [/ w(u- V)F"dQ + / Vw - (DpVF™)dQ + / waFF"dQ}
Q Q Q

Following the same procedure the weak form for G is found.

/WA—GdQ-i-W V w.(DGVAG)dQJr/WGAGdQ] _

-w {/ Vw - (DeVG™)dQ) + / woGG"dQ} + / woir (WF" + WAF) dQ
Q Q Q
Where w is the test function. W and w are the Padé matrix and vector respectively.

After interpolating w, F and G with chosen shape functions and integrating in the appropriate gauss
points, the following system of linear equations, which will be solved in each time-step, is found from

equations (1)) and

M + AtW (C + DrK + 0pM)| AF = —Atw (C + DpK + 0pM) F" (3)

M + AtW (DgK + 0cM)] AG = —Atw (DgK + 06M) G™ + Atogr (WME™ + WMAF) (4)

1

The imposition of boundary conditions for both equations is done by means of Lagrange Multipliers

technique as follows:
A ADir AF \ [BF" (5)
ADir 0 A ~ \ bDir

Where A and B are the Lh.s. and r.h.s. of equation (4]) respectively. For G the procedure is similar.

As the coupling is in only one direction, in the sense that G depends on F but the opposite is not
true, the two equations can be solved separately within each time-step. In the practical point of view,
equation , or system , is solved for AF which is inserted, along with F™, into the rhs of equation
leading to the solution for AG. This is done step by step until the end time T.

2.2 Results

The problem was solved using a 30x30 Q1Q1 mesh. Figure shows the convective velocity vector and
Figure shows the surface for the convective velocity in directions v and x.

26 T

24}
22F
SRRRRARA SRS NEE
W
IRRRE AR RRRERN PR
REREN] I
~aob A
WOV e b
ARV Ve
SRR RRRRRES [EEEERNNSRNY
\'xxLlL‘l‘llt‘t‘t“‘)l‘////114/1
18k ANV e
RSN R N RN RSN
‘\x\llell55“5&“‘A‘11‘11[}/‘1
AV ey
AV e
A
16F SRR R RN N NSRRI
D e
e
A R SO
o
14 ‘
-5 0 5

Figure 1: Convective velocity vector field.

0.06
0.04

0.02

-0.02
-0.04

-0.06

Figure 2: Velocity - (a) x direction; (b) y direction.

The time integration was performed using the Crank-Nicholson method (R22 and R33 padé are also
available) with time-step At = 0.1. In order to define the stationary solution, the norm of the FEM
approximated solution for F and G, given by vV F" - F& andv/G" - GP respectively, were tracked during
the integration. Figure show the evolution of the norm of each approximation.

2

2600 500

2400

2200 350

2000 300

IF-Fl

<]
& 250
1

800 200

1600

1400

1200 ‘ ‘ 0 ‘ ‘
0 5 5

Time [s] Time [s]

(a) (b)
Figure 3: Norm of approximated soluiton - (a) F; (b) G.

It can be noticed that for time around 15 s, stationary solution is reached by both variables. The
time evolution of F and G, from initial condition until stationry state at T = 15 s is show in next figures.
Initial condition for both F and G were chosen as uniform, fulfilling the boundary conditions. For G
zero initial condition is imposed.

0.8
0.6
0.4

0.2

X y 10 -5 x

16.6

T AT A
S “““\\‘““““““‘:‘“““‘," 16.4
SN e uetiguns
RsisregunTsusties
S gesientgent
COOOSSS S

16.2

15.8
15.6

15.4

15.2

1\
‘ ST
ottt nnsiivns

juttiien
Rt
uestiyges
et

3\ 0

N

\“\
0

S
!

e
\8&\\\‘ ‘\
SANRas st
TR

From the time evolution figures it can be noted that undergoes a overshoot in the solution between
T = 0s and T = 5s, as also observed in the norm graph of figure . This is caused by the sudden
imposition of the force F in such a way that reaction can not countermeasure causing the overshoot.
However after a time, amplitude is alleviated by reaction and diffusion effects.

3 Problem II

The following set of equations governs the stokes problem in the space domain 2:

V-oc=0
V-u=0

With Dirichlet boundary condition such as u,(r = 15) = —0.15, ug(r = 15) = 0,u,.(r = 25) = —0.30
and ug(r = 25) = 0. Homogeneous Neumann boundary condition is imposed in all other boundaries.

3.1 Weak Formulation and solution method

For this particular stokes problem, the weak formulation for finite element approximation reads:

a(w", ") + b(w", p") = —a(w", V) (6)

b(vhv qh) = —b('llg, qh) (7)
Where:

a(w,v) = /Qé(w)TCvé(v)dQ = Ku"

b(w,p) = /pV cwdQ) = GTp"
Q

Using Lagrange multipliers technique, where p is the multiplier, the system of equations to be solved

becomes:
< G- g

Using Lagrange multipliers technique to impose boundary conditions, the final system of equations
is found. With ADir and bDir are the boundary matrix and vector with BC values respectively.

K ADir" GT U 0
ADir 0 0 Al =\ bDir (9)
G 0 0l \p 0

3.1.1 Stabilized formulation for P1P1 interpolation

The stabilized Galerkin formulation by a Least Square approach (GLS), for this particular problem of
P1P1 interpolation is found in equations and . Where 7, = 1/3 is used as an optimal value for
bilinear quadrilateral elements.

a(w", v") + b(w", p") = —a(w", vp) (10)
Nel Nel

b(vha qh) - Z Te(vqh7 Vph)Qe = —b(U%7 qh> - Z Te(vqh) bh)Qe (11)
e=1 e=1

As linear elements are used for both velocity and pressure interpolation, the weak form of momentum
equation is not changed. Only the compressibility constrains is changed. Thus, two new tensors are
added to the problem corresponding to the two terms in the equation , named here as A, and h,.
It the present case h. is identically zero as body forces b are inexistent in the model.

Consequently the system of equations to be solved becomes:

o 3G)=(dn) w

Using Lagrange multipliers technique to impose boundary conditions, the final system of equations
becomes:

K ADir" GT U 0
ADir 0 0 A | = vDir (13)
G 0 Ae D he

3.2 Results

The problem was solved using a 30x30 Q1Q1 mesh, which is not a LBB compliant coupling. Standard
and stabilized Galerkin formulations were tested. Figure show the results for the vector velocity

field.

25—
24

¥
23hY]
22 4

/
211 4

Surfaces for the velocity in x and y, for both formulations are shown in Figures

25

24

23

22

21

Figure 4: Velocity vector field - (a) Standard; (b) Stabilized

the results in velocity, as expected, both formulations presents similar results.

008l
0.044
0oz

ﬁ.

!
0024 }“‘\t Y

T,
\\\“{t{“ e
¥ :“3‘

‘I““\‘ S

“‘A‘?&"o’wyfc

\\{%\ 77
Ty
3 \\“:w».::ya':;;'

“ “:‘

gyt
% ’;"’0
e

eteiee ey, fi

A

S0

T

(SR
b b,"""‘"‘%'l £

Figure 5: Velocity in x direction - (a) Standard; (b) Stabilized

7
Wé}?)
I;’;
Thpited
)Ql;ff@'
ity
s "'

and @ From

The stabilization in pressure to eliminate spurious nodes, which is seek here, is observed in Figure
(7). Peaks in the pressure appears at the domain corners which are the regions of interface between
Dirichlet and homogeneous Neumann boundaries. This do not represent a discontinuity, but given the
problem formulation and parameters, high gradients appear in both pressure and velocity.

1000 180

800
600 T
1504}
400 _
o 200 CIRISEE |
0 1
504+
200 :
400 357

-600
-300

Figure 7: Pressure field - (a) Standard; (b) Stabilized

4 Problem III

The following set of partial differential equations governs the problem in the time-space domain (0,T)

x () vV - (Vo) + V- 0, (F) + T () = 0

F
%—t =—u-VF + DpV?F — opF
%—f = DV G — 606G + 6 F

Where all constants and boundary conditions are taken from previous problems.

4.1 Weak Formulation and solution method

After applying the Galerkin Weighted residual method and integrating the higher order derivative terms
by parts (neglecting boundary terms) of the stokes equation for the velocity field u, the weak form to

7

be solved is found. Time subscripts are present as F' = F(t), thus u is implicitly time dependent and
can be evaluated at any time n given F™.

vKyou" — Tyu® = Te " (14)

The boundary conditon constrain is imposed by lagrange multipliers and the final system of equation

for u™ is found:
K,—T. ADir' u \ [TeF" (15)
ADir 0 A —\ bDir

The time discretization of F is done by means of # method, which can be seen as a particular case
of the Padé approximations when W = § and w = 1. Thus equation can be rewritten for the time
dependent convective velocity u case as:

Fn+1
/w dQY+40 {/ wa™t - V) F a0 + / Vw - (DpVE"™MdQ + / waFF”“dQ} =
o At Q Q 0 (16)
FTL
/ w——dQ+ (6 —1) / w(ua™ - V)F"dQ + / Vw - (DpVF™)dQ + / wopF"dQ
o At Q Q Q
The weak form for G is similar to the one found in equation and reads as follows:
AG
w——d2+0 Vw - (DeVAG)AQ + | wocAGAQ| =

- [/ Vw - (DeVG™)dQ + / waGG”dQ} + / wogr (F™ + 0AF) dQ)
Q Q Q

After interpolating w, F and G with chosen shape functions and integrating in the appropriate gauss
points, the following system of linear equations, which will be solved in each time-step, is found from

equations and .
[M + At (C(u™*") + DpK 4+ 0pM)] F*™ = [M + (6 — 1)At (C(u™) + DpK + opM)] F" (18)

M + Atf (DK 4 06M)]| AG = —At (DK + 0¢M) G™ + Atogr (ME™ + MAF) (19)

Here, solution for F™*! is not directly computed if an implicit method (6 # 0) is chosen to integrate
equation as u™ "1 is needed to compute the convective matrix C(u™"!) at the Lh.s. of the equation.
Thus, in such a case, a iterative method needs to take place involving equations and to find
the variables u and F ant t =n + 1.

Solution for G follows the same procedure as used in Problem 1, section[2.1] no matter the parameter
0 used for time integration. Lagrange multipliers are also employed to solve equations and at
each time-step as described in section [2.1]

4.1.1 General Procedure: Iterative Method to solve the coupling u/F

As explained previously, a iterate process is necessary when implicit time integration method is em-
ployed. This iterative algorithm was implemented as follows:

BEGIN
FOR {n = 1 to N° timesteps}

— k=0

— Au™ =T¢F"™, % Computation of u™ from F™
— C(u"); % Computation of C™;

— uptt =un % First approximation for u®*1;
— C(upthy; % First approximation for C**1;

— [B+ CupthH]F = [B + C(u?)]F™; % First approximation for F"*!

WHILE {Criteria not met}

_ AUEE =Ty F]?H; % k+1 th approximation for u™*!;
- C(upty); % k+1 th approximation for C(u™™*)
- B+ C(upi)|FH = [B+ C(u™)]F™; % k+1 th approximation for F™*
_ A+l — F];:J_Fll — F % Check convergence of Fnt!
_ Aurtl — u{:i — uﬂ“; % Check convergence of u®*!
— k=k+1;
END

— utt =upiy; % Solution for u™+!

Frtl — F,?:ll; % Solution for Fm+!
. END
END

4.1.2 Simplified Procedure to solve the coupling u/F

As seen previously for each time step, a new u needs to be computed at t = n + 1. However, the T¢
matrix, which relates u with F, only operates in the boundary terms of F. More precisely, it operates in
the terms correspondent to the upper boundary where F is constant, specified by a Dirichlet boundary
condition. Consequently, the term T F' will be constant after the first computation of it using a initial
condition for I = F! that fulfills the Boundary condition. As a result u! is found and u will also be
constant from this point throughout the time steps as the r.h.s. term 7 F™ is time-invariant in this
specific problem.

From this conclusion, the iterative process can be dropped and u and C(u) can be both computed
only once, outside the time-step loop. The algorithm reduces to the following

BEGIN
Aul = T F!; % Computation of u! from F*!
C(u?) ; % Computation of C = C(u');

FOR {n = 1 to N° timesteps}
— [B+ CJF*! = [B + C]F™; % Solution for Fmt!

END

END

This simplified algorithm to solve F is similar to the one used in Problem 1, where the FEM matrices
are computed before the time-stepping loop. The only difference relies on the velocity field (u) applied.

4.2 Results

As explained previously, given the form of the coupling u/F', the convection velocity field will be constant
over time, thus both algorithms, direct and iterative will present same results. Thus, no distinction is
made from here. The problem was solved using a 30x30 Q1Q1 mesh. Figure shows the convective

velocity vector field, which was evaluated using the inital condition for F.

25

2

w £
i

2

181 (IR
EELEE
RSN R RS R EN NNV,

‘HHHHuuwuu;uuu““‘

R R AR AN R RN

. .

o

Vi

-4 -2 0 2 4

Figure 8: Convective velocity vector field.

From the velocity components surface, shown in Figure @, it can be observed a high gradient for
the component in y direction. It means that the force provided by F in u at the boundary is relatively
high. An reduction in the model coefficients, specially a reduction in the coefficient of the matrix T¢

which couples u and F may generate a more smooth and feasible profile.

Figure 9: Velocity - (a) x direction; (b) y direction.

The time integration was performed using the Crank-Nicholson method (R22 and R33 padé are also
available) with time-step At = 0.1. In order to define the stationary solution, the norm of the FEM

10

approximated solution for F and G, given by vV F" - F? andv/G" - GP respectively, were tracked during

the integration. Figure show the evolution of the norm of each approximation.

2500 600

500 b
2450

400 : ‘ : E
2400

IF-Fl
GGl
@W
o
o

2350
200 - 1

2300
100 4

2050 i i i i i i i 0 i i i i i i i
0 0.5 1 1.5 2 25 3 3.5 4 0 0.5 1 1.5 2 25 3 3.5 4

Time [s] Time [s]
(a) (b)
Figure 10: Norm of approximated solution - (a) F; (b) G.

The evolution of F and G until stationary state is show in next figures. Initial condition for
and G were chosen as uniform, fulfilling the boundary conditions.

81

80.8

80 80.6 20

s 80.4

70
80.2

80
60
79.8
55
79.6

79.4

79.2

79

v 10 -5

=
i us

RS

e
eSS igue!
Nesste

y 10 5

v 10 5

11

both F

0.8
0.6
0.4

0.2

Jes!
88 Wgqus el
T
s !

Nusesy

It can be noticed that for time around 2 s, stationary solution is reached by both variables, as
demonstred in Figure . The stationary solution is reached faster than the one found in the Problem
I, this has to do with the high convective velocity imposed in this problem, as seen previously. This
way F decreases asymptotically while G do the opposite without presenting any oscillation of overshoot
as seen in Problem I. The time evolution of F and G, from initial condition until stationary state at T
= 2 s is show in next figures. Initial condition for both F and G were chosen as uniform, fulfilling the
boundary conditions.

12

5 Annex - MatLab Routines
5.1 Problem 1

Main routine

clear, close all, home

clc

format long

disp ("' ")

disp('This program solves a coupled transient convection-diffusion problem:"')
disp('Ft + a GRAD F - NuF DIV(GRAD)F + SigF*F = 0')

disp('Gt - NuG DIV(GRAD)G + SigG*G = c*F'")

disp('on a circular sector domain r[10, 25] x theta[-10°, 10°].")

disp (" ")

disp('Velocity field is -k*(y,x)/r"2")

PR.NuF = 5;%5; $[m"2*s"-1]
PR.SigF = 0.25;%0.25; %[s"-1]
% G

PR.NuG = 15; %15 %[m"2*s"-1]
PR.SigG = 2; %2 S[s™-1]

% COUPLING CONSTANT

PR.c = 0.5; $[s"-1]

nx = 30;

ny = 30;

% Matrices of nodal coordinates and connectivities
elem = 0;

[X,T] = createMesh (ny,nx);

%[X T] = CreateMesh Q(-5,5,15,25,nx,ny)

% figure (1)
plotMesh (T, X, elem)
numnp = size(X,1);

Conv = zeros(size(X));
R2 = X(:,1).72 + X(:,2).72;
R = sqrt(R2);

k =1/1500;
Conv(:,1) = -k*R.*X(:,1);
Conv(:,2) = -k*R.*X(:,2);

figure (15)
quiver (X(:,1),X(:,2),Conv(:,1),Conv(:,2))
xlabel ("\bfx")

ylabel ("\bfy")

% BOUNDARY CONDITIONS (LAGRANGE MULTIPLIERS METHOD)

BCF = BC_F (nx,ny,numnp) ;

BCG = BC_G(nx,ny,numnp) ;

% F EQUATION

Fb = 80;
in = 1;
Rmax = 25;
Ro = 15;

% UNIFORM (compatible with Dirichlet BC)
cF = Fb*ones (numnp,1l);

elseif in ==

% LINEAR (compatible with Dirichlet BC)
cF = Fb* ((R-Ro)/ (Rmax-Ro)) ;

%cF = Fb* ((X(:,2)-Ro)/ (Rmax—-Ro)) ;

elseif in == $Discontinuous
$cF = Fb* ((R > 24)+ (R == 25));
end

% G EQUATION
cG = zeros (numnp,1);

disp (" ")
disp('There are three integration schemes available ')
disp (' [0] = Crank-Nicolson');
disp (' [1] = R22");
disp (' [2] = R33");
d temp = input('Choose a method to perform time integration = ");
% Matrices for the time integration
if d temp == 0
method = 'CN + ';
W =1/2;
w = 1;
elseif d temp ==
method = 'R22 + ';

W= (1/24)*[7 -1; 13 51;
w o= [1/2; 1/2];
elseif d temp ==

method = 'R33 + ';

r5 = sqgrt(5);

W = [49-13*r5 12*(2-r5) r5-1
26*r5 12*r5 -2*r5
61-13*r5 36 11+r5]1/120;

w = [12*(5-r5); 24*r5; 12*(5-r5)1/120;

else
error ('Unavailable time integration scheme')

[SolF, SolG] = Galerkinl (X,T,Conv,PR,BCF,BCG,cF,cG,W,w,dt,nstep, numnp) ;

Subroutine: BC_F (Boundary Condition F)

function BCF = BC F(nx,ny,nunk)

[Accd, bcecd] = BC(nx,ny,nunk)

This function creates matrices Accd and bccd to impose homogeneous
Dirichlet boudary conditions using Lagrange multipliers method.

o° o° o o°

o

nx,ny: number of elements on each direction
nunk: number of degrees of freedom for the velocity field

oe

o

% Nodes on the Dirichlet boundary
nodesD = [(ny+l)*(nx+1l) : -1 : ny*(nx+1l)+1]"'; $ r =25

)

% Imposed boundary conditions
C = [nodesD, zeros(size(nodesD))];

o)

% Boundary conditions' matrix

nDir = size(C,1);

Accd = zeros (nDir,nunk);
Accd(:,C(:,1)) = eye(nDir);

% Boundary conditions' vector
bced = C(:,2);

BCF.Accd = Accd;

BCF.bccd = bccd;

Subroutine: BC_G (Boundary Condition G)

function BCG = BC G(nx,ny,nunk)

[Accd, bcecd] = BC(nx,ny,nunk)

This function creates matrices Accd and bccd to impose homogeneous
Dirichlet boudary conditions using Lagrange multipliers method.

o° o° o°

o

% nx,ny: number of elements on each direction

% nunk: number of degrees of freedom for the velocity field
Accd = []1;

% Boundary conditions' vector

bccd = [];

BCG.Accd = Accd;
BCG.bccd bccd;

Subroutine: Galerkinl (Time integration)

function [SolF , SolG] = Galerkinl (X,T,Conv,PR,BCF,BCG,cF,cG,W,w,dt,nstep,npoin)
% Sol = Galerkin (X, IEN,Conv,nu, f,c,Accdl,bccdl, T,s,beta,dt,nstep)

% This function computes solution for a transient convection-diffusion equation
% at different time instants.

% Galerkin method is used to perform spatial discretization.

% Input:

% X: nodal coordinates

% IEN: connectivities

% Conv: velocity field

% nu: diffusion

% f: source term

% c: initial condition

% Accdl, bccdl: matrices to impose boundary conditions using Lagrange multipliers
% T,s,beta: matrices for the time-integration scheme
% dt: time-step

% nstep: number of time steps

% F PARAMENTERS

Nu = PR.NukF;

Sig = PR.SigF;

% BC MATRICES

Accdl = BCF.Accd;
bccdl = BCF.bccd;
nccd = size(Accdl,l);

% Number of Gauss points (numerical quadrature)

ngaus = 4;

% Quadrature

[pospg,wpg] = Quadrature (ngaus) ;

% Shape Functions

[N,Nxi,Neta] = ShapeFunc (pospg) ;

% Matrices obtained by discretizing the Galerkin weak-form
M = CreMassMat (X, T, pospg, wpg,N,Nxi,Neta) ;

C = CreConvMat (X, T,Conv, pospg, wpg,N,Nxi,Neta) ;

K = CreStiffMat (X, T,pospg,wpg,N,Nxi,Neta) ;

% Integration matrix

[n,m] = size(W);

I

% LEFT HAND SIDE SYSTEM FOR F

% Computation of the matrix necessary to obtain solution at each time-step: A du

Kt = C + Nu*K + Sig*M; $REACTION TERM INCORPORATED
A= [1;
for i = 1:n
row = [];
for j = 1:m
row = [row, Id(i,]j)*M + dt*W(i,])*Kt];
end
A = [A; row];
end
Accd = []; bcecd = [];
for i = 1:n
row = [];
for j = 1:m
row = [row, Id(i,]j)*Accdl];
end
Accd = [Accd; row];
bcecd = [beced; bcedl];
end
nccd = n*nccd;
Atot = [A Accd'; Accd zeros(nccd)];

Atot = sparse (Atot);
Factorization of matrix Atot
L,U] = lu(Atot);

= sparse (L) ;

= sparse (U) ;

Initial condition
SolF = cF;
SolG = cG;
dSolF = [];
% Loop to compute the transient solution
disp ("' ")

oo O o— oe

disp('Transient analysis: computation of the solution at each time step')

for i=l:nstep

aux = -dt*Kt*cF;
F=11;
for h =1:n
F = [F; w(h)*aux];
end
F = [F;bccd];
dc = U\ (L\F);
dSolF = [dSolF dc(l:n*npoin)];

dc = reshape(dc(l:n*npoin),npoin,n);
cF = cF + sum(dc,2);
SolF = [SolF cF];

[cG] = solve G1(M,K,PR,cG,SolF,dSolF,BCG,1i,dt,W,w,npoin);

So0lG = [SolG cG];
end

Subroutine: Solve_GI1 (time integration of G)

function [cG] = solve GI1(M,K,PR,cG,fl,£2,BCG,1i,dt,W,w,npoin)

% G PARAMENTERS

Nu = PR.NuG;

Sig = PR.SigG;

k = PR.c;

% BC MATRICES

Accdl = BCG.Accd;
bccdl = BCG.bccd;
nccd = size(Accdl, 1) ;

F

Integration matrix
n,m] = size(W);
d = eye(n,m);
% Computation of the matrix necessary to obtain solution at each time-step: A du = F
Kt = Nu*K + Sig*M; SREACTION TERM INCORPORATED and NO C MATRIX
= [1;
B = [1];
1 =
col =

n
row = [];
[

for § =

l:m
= [row, Id(l,3)*M + dt*W(l,])*Kt];
col = [col, k*dt*wW(l,j) *M]; $FORCE TERM FROM F

end

Accd = []

for 1 = 1:
row =
for j

r row, Id(l,7j)*Accdl];

end

Accd = [Accd; row];

bcecd = [beced; bcedl];

nccd = n*nccd;

Atot = [A Accd'; Accd zeros(nccd)];
Atot = sparse (Atot);

% Factorization of matrix Atot
[L,U] = lu(Atot);

L = sparse(L);

U = sparse (U);

% Source term

Mf = k*M*fl; %%FORCE TERM FROM F
% Initial condition

aux = dt* (-Kt*cG + Mf(:,1));

F= 11
for h = 1:n
= [F; w(h)*aux];
end
F=F + B*f2(:,1);
F = [F;bccd];
dc = U\ (L\F);

dc = reshape(dc(l:n*npoin),npoin,n);
cG = ¢cG + sum(dc,2);

5.2 Problem II

Main routine

clear; close all; clc
addpath ('Func ReferenceElement')

dom = [-4.5,4.5,14.5,25];
Rmax = 25;
Rmin = 15;
mu = 10"73;

% Element type and interpolation degree

% (0: guadrilaterals, 1l: triangles, 11: triangles with bubble function)
elemV = 0;

degreeV = 1;

degreeP = 1;

elemP = elemV;

referenceElement = SetReferenceElementStokes (elemV,degreeV,elemP,degreeP) ;
nx = 30;

ny = 30;

[X,T] = createMesh (ny,nx);

XP = X;

TP = T;

figure; PlotMesh(T,X,elemV, 'b-");

figure; PlotMesh (TP,XP,elemP, 'r-");

% Matrices arising from the discretization

met = 2; % Galerkin: met = 1; Estbilized: met = 2

if met ==

[K,G,f] = StokesSystem2 (X,T,XP,TP,referenceElement) ;
[ndofP,ndofV] = size (G);

K = mu*K;

A = zeros (ndofP,ndofP);

h = zeros(ndofP,1);

elseif met == 2

[K,G,f,A,h] = StokesSystem GLS2 (X,T,XP,TP, referenceElement) ;
[ndofP,ndofV] = size (G);

dx = (Rmax - Rmin)/ny;

tau = (1/3)*dx"2/ (4*mu) ;

K = mu*K;

A = tau*A;

h = tau*h;

end

o

Matrix and r.h.s vector to impose Dirichlet boundary conditions using
Lagrange multipliers
A DirBC, b DirBC, nDir, confined] = BC m(X,nx,ny,ndofV);

o
°

o° — o°

oe

Total system of equations
if confined
nunkP = ndofP-1;

disp(' ")
disp('Confined flow. Pressure on lower left corner is set to zero');
G(1l,:) = [1;
else
nunkP = ndofP;
end
Atot = [K A_DirBC' G'
A DirBC zeros (nDir,nDir) zeros (nDir, nunkP)
G zeros (nunkP, nDir) A (1l:nunkP,1:nunkP)];
btot = [£ ; b DirBC ; h(l:nunkP,1)];

sol = Atot\btot;

Subroutine: StokesSystem_GLS2 (GLS formulation Cauchy tensor)

function [K,G,f,A,h] = StokesSystem GLS2(X,T,XP,TP,referenceElement)

o

[K,G,f] = StokesSystem2 (X,T,XP, TP, referenceElement)

o oo

oe

X,T: nodal coordinates and connectivities for velocity
XP,TP: nodal coordinates and connectivities for pressure
referenceElement: reference element properties (quadrature,
elem = referenceElement.elemV;

ngaus = referenceElement.ngaus;

wgp = referenceElement.GaussWeights;

N = referenceElement.N;

Nxi = referenceElement.Nxi;

Neta = referenceElement.Neta;

NP = referenceElement.NP;

o

oe

NPxi = referenceElement.NPxi;

NPeta = referenceElement.NPeta;

ngeom = referenceElement.ngeom;

% Number of elements and number of nodes in each element
[nElem, nenV] = size(T);

nenP = size(TP,2);

o)

% Number of nodes
nPt V = size(X,1);
if elem == 11

nPt V = nPt V + nElem;
end
nPt P = size(XP,1);
% Number of degrees of freedom
nedofV = 2*nenV;
nedofP = nenP;
ndofV = 2*nPt V;
ndofP = nPt P;
= zeros (ndofV,ndofV) ;
= zeros (ndofP,ndofV) ;
= zeros (ndofP,ndofP);
= zeros (ndofV,1);
= zeros (ndofP, 1) ;
Loop on elements
for ielem = l:nElem

% Global number of the nodes in element ielem
Te = T(ielem, :);
TPe = TP (ielem, :);
% Coordinates of the nodes in element ielem
Xe = X(Te(l:ngeom), :);
Xp XP(TPe(l:nenP), :);
% Degrees of freedom in element ielem
Te dof = reshape([2*Te-1; 2*Te], 1, nedofV);
TPe dof = TPe;

% Element matrices
[Ke,Ge, fe,Ae,he] =

a0 D QXN

Matrices K, G and r.h.s vector f obtained after discretizing a Stokes problem

shape functions...)

EleMatStokes?2 (Xe, Xp, ngeom, nedofV, nedofP, ngaus, wgp, N, Nxi,Neta, NP, NPxi, NPeta) ;

[

% Assemble the element matrices

K(Te dof, Te dof) = K(Te dof, Te dof) + Ke;
G(TPe_dof,Te dof) = G(TPe dof,Te dof) + Ge;

A (TPe dof,TPe dof) = A(TPe dof,TPe dof) + Ae;
f(Te _dof) = f(Te_dof) + fe;

h(TPe dof) = h(TPe dof) + he;

end

function [Ke,Ge,fe,Ae,he] =

EleMatStokes?2 (Xe, Xp, ngeom, nedofV, nedofP, ngaus, wgp, N, Nxi,Neta, NP, NPxi, NPeta)

Ke = zeros(nedofV,nedofV);
Ge = zeros (nedofP,nedofV);
Ae = zeros (nedofP,nedofP);
fe = zeros(nedofVv,1);

he = zeros(nedofP,1);

B = zeros (3,nedofV);

% Loop on Gauss points

for ig = l:ngaus
N_lg = N(ig,:);
Nxi ig = Nxi(ig,:);
Neta ig = Neta(ig,:);
NP ig = NP (ig, :);
NPxi ig = NPxi(ig,:);
NPeta ig = NPeta(ig,:);
Jacob = [
Nxi ig(l:ngeom)* (Xe(:,1)) Nxi ig(l:ngeom)* (Xe(:,2))
Neta ig(l:ngeom)* (Xe(:,1)) Neta ig(l:ngeom)* (Xe(:,2))

17

JacobP =][
NPxi ig(l:nedofP)*(Xp(:,1)) NPxi ig(l:nedofP)* (Xp(:,2))
NPeta ig(l:nedofP)*(Xp(:,1)) NPeta ig(l:nedofP)*(Xp(:,2))

1
dvolu = wgp (ig) *det (Jacob) ;
res = Jacob\[Nxi ig;Neta ig];
nx = res(l,:);
ny = res(2,:);
resP = JacobP\ [NPxi ig;NPeta ig];
Nx P = resP(1,:);
Ny P = resP(2,:);
Ngp = [reshape([1;0]1*N _ig,1,nedofV); reshape([0;1]*N ig,1l,nedofV)];
dN = reshape(res,l,nedofV);

C = diag(I[2,2,1]);

B(l,1:2:end) = nx;

B(2,2:2:end) = ny;

B(3,1:2:end) = ny; B(3,2:2:end) = nx;
Ke = Ke + B'*C*B*dvolu;

Ge = Ge - NP_ig'*dN*dvolu;

Ae = Ae - (Nx P'*Nx P + Ny P'*Ny P)*dvolu;
x 1g = N_ig(l:ngeom) *Xe;

f igaus = SourceTerm(x _1ig);

fe = fe + Ngp'*f igaus*dvolu;

he = he - resP'*f igaus*dvolu;

end

Subroutine: BC_m (Boundary Condition)

function [A, b, nDir, confined] = BC m(X,nx,ny,n)
[A, b, nDir, confined] = BC(X,dom,n)
Matrices to impose Dirichlet boundary conditions using Lagrange
multipliers on a rectangular domain
Input:
X: nodal coordinates
dom: domain description [x1,x2,yl,y2]
n: number of velocity degrees of freedom
Output:
A,b: matrix and r.h.s. vector to impose the boundary conditions using
Lagrange multipliers
nDir: number of prescribed degrees of freedom

A° A° A° A° o° A° A° o° o° o

oe

% confined:

nodesLower = [1 : nx+1]"';

nodesUpper = [(nx+l)*ny+l : 1 : (ny+l)*(nx+1)]"';
nodesDirBC = [nodesLower; nodesUpper];

o)

% confined flow (velocity is imposed for all the nodes in the boundary)
confined = 0; %NO CONFINED FLOW

% number of prescribed degrees of freedom
nDir = 2*length (nodesDirBC) ;

oe

Degrees of freedom where the velocity is prescribed
(horizontal and vertical component)

o

C = [2*nodesDirBC - 1; 2*nodesDirBC];

A = zeros(nDir,n);

A(:,C) = eye(nDir);

Thl = atan2 (X (nodesLower, 2),X (nodesLower, 1)) ;

Th2 = atan2 (X (nodesUpper, 2),X (nodesUpper, 1)) ;
% Imposed value (velocity).
% at r = 15 (or Y1) --> Ur = -0.15 and Utheta = 0

o)

Ulower
Vliower

Uupper =

Vupper

b = [

1;

s at r =

25 (or Y2)

--> Ur

= -0.15*cos (Thl);
= -0.15*sin (Thl) ;

-0.3*cos (Th2) ;

= -0.3*sin (Th2);

Ulower;
Vlower;

Uupper
Vupper

-0.30 and Utheta

0

5.3 Problem III

Main routine

clear, close all, home

clc

format long

addpath ('EX3 u')

addpath ('EX3 u\Func ReferenceElement')

disp ("' ")
disp('This program solves a coupled transient convection-diffusion problem:")
disp('Ft + a GRAD F - NuF DIV(GRAD)F + SigF*F = 0')

(
(
disp('Gt - NuG DIV (GRAD)G + SigG*G = c*F'")
('on a circular sector domain r[10, 25] x theta[-10°, 10°].")

% PARAMETERS - COEFFICIENTS

PR.NuF = 5;
PR.SigF = 0.25;

PR.NuG = 15;
PR.SigG = 2;

% COUPLING CONSTANT
PR.c = 0.5;

% VISCOSITY (u)
PR.NuU = 1000;

nx = 30;
ny = 30;
% Matrices of nodal coordinates and connectivities
elem = 0;

[X,T] = createMesh (ny,nx);

numnp = size(X,1);

plotMesh (T, X,elem)

s F
BCF = BC_F (nx,ny,numnp) ;
35 G
BCG = BC_G(nx,ny,numnp) ;
5 U

BCu = BC m(X,nx,ny,2*numnp) ;

% F (EQUATION)

Fb = 80;
Rmax = 25;
Ro = 15;

R2 = X(:,1).72 + X(:,2).72;

R = sqgrt(R2);

in = 1;

if in ==

% UNIFORM (compatible with Dirichlet BC)
cF = Fb*ones (numnp,1);

elseif in ==

% LINEAR (compatible with Dirichlet BC)
cF = Fb* ((R-Ro)/ (Rmax-Ro)) ;

$cF = Fb* ((X(:,2)-Ro)/ (Rmax—-Ro)) ;

elseif in == %$Discontinuous
ScF = Fb*((R > 24)+ (R == 25));
end

% G (EQUATION)
cG = zeros (numnp, 1) ;

% INTEGRATION PARAMETERS

method = 'CN + ';

W=1/2;

=1;

Solution

= 1;

f s ==

% DIRECT

[SolF , SolG] = Galerkinl 3(X,T,PR,BCu,BCF,BCG,cF,cG,W,w,dt,nstep, numnp) ;
elseif s ==

% ITERATIVE METHOD

BCFEF = BC_FZ(nx,ny,numnp); % NEW DEFINITION OF BC (SOLVING FOR F NOT DF)
[SolF , SolG] = Galerkinl 3IT(X,T,PR,BCu,BCF,BCG,cF,cG,W,w,dt,nstep, numnp) ;
end

oo =

SR

Subroutine: BC_m (Boundary Condition U)

function BC = BC m(X,nx,ny,n)
[A, b, nDir, confined] = BC(X,dom,n)
Matrices to impose Dirichlet boundary conditions using Lagrange
multipliers on a rectangular domain
Input:
X: nodal coordinates
dom: domain description [x1,x2,yl,y2]
n: number of velocity degrees of freedom
Output:
A,b: matrix and r.h.s. vector to impose the boundary conditions using
Lagrange multipliers
nDir: number of prescribed degrees of freedom

A® A° A° o° o° O° o° o° o o°

o

% confined:

nodesLower = [1 : nx+1]"';

nodesUpper = [(nx+1l)*ny+l : 1 : (ny+l)*(nx+1)]"';
nodesDirBC = [nodesLower; nodesUpper];

o)

% number of prescribed degrees of freedom
nDir = 2*length (nodesDirBC) ;

% Degrees of freedom where the velocity is prescribed
% (horizontal and vertical component)

C = [2*nodesDirBC - 1; 2*nodesDirBC];

A = zeros(nDir,n);

A(:,C) = eye(nDir);

Thl = atan2 (X (nodesLower, 2),X (nodesLower, 1)) ;

Th2 = atan2 (X (nodesUpper, 2),X (nodesUpper, 1)) ;
% Imposed value (velocity).

% at r = 15 (or Y1) --> Ur = -0.15 and Utheta = 0
% at r = 25 (or Y2) --> Ur = -0.30 and Utheta = 0
Ulower = -0.15*cos (Thl);

Vlower = -0.15*sin(Thl);

Uupper = -0.3*cos (Th2) ;

Vupper = -0.3*sin(Th2);

b =1

Ulower; Uupper
Vlower; Vupper
1

BC.A = A;
BC.b = b;

BC.nDir nDir;

Subroutine: BC_F (Boundary Condition F)

function BCF = BC_F(nx,ny,nunk)

[Accd, bcecd] = BC(nx,ny,nunk)

This function creates matrices Accd and bccd to impose homogeneous
Dirichlet boudary conditions using Lagrange multipliers method.

o° o o o

oe

nx,ny: number of elements on each direction
nunk: number of degrees of freedom for the velocity field

oe

o

% Nodes on the Dirichlet boundary
nodesD = [(ny+l)*(nx+l) : -1 : ny*(nx+1l)+1]'; $ r =25
% Imposed boundary conditions

C = [nodesD, zeros(size (nodesD))];

o)

% Boundary conditions' matrix

nDir = size(C,1);
Accd = zeros (nDir,nunk);
Accd(:,C(:,1)) = eye(nDir);

o)

% Boundary conditions' vector
bced = C(:,2);

BCF.Accd Accd;

BCF.bccd bccd;

Subroutine: BC_G (Boundary Condition G)

function BCG = BC G(nx,ny,nunk)

[Accd, bcecd] = BC(nx,ny,nunk)

This function creates matrices Accd and bccd to impose homogeneous
Dirichlet boudary conditions using Lagrange multipliers method.

o° oo o°

o

% nx,ny: number of elements on each direction

% nunk: number of degrees of freedom for the velocity field
Accd = [];

% Boundary conditions' vector

bccd = [1;

BCG.Accd = Accd;

BCG.bccd = bccd;

Subroutine: Galerkinl_3 (Time integration - Direct)

function [SolF , SolG] = Galerkinl 3(X,T,PR,BCu,BCF,BCG,cF,cG,W,w,dt,nstep,npoin)
Sol = Galerkin (X, IEN,Conv,nu, f,c,Accdl,bccdl, T,s,beta,dt,nstep)

This function computes solution for a transient convection-diffusion equation
at different time instants.

Galerkin method is used to perform spatial discretization.

o° o o° o o°

o

Input:
X: nodal coordinates
T: connectivities
Conv: velocity field
nu: diffusion
f: source term
c: initial condition
Accdl, bccdl: matrices to impose boundary conditions using Lagrange multipliers
W,w,beta: matrices for the time-integration scheme
dt: time-step
nstep: number of time steps
F PARAMENTERS
Nu = PR.NuF;
Sig = PR.SigF;
% VISCOSITY (u)
NuU = PR.NuU;
% BC MATRICES

00 A° A° A° A° A° A° A° A° o°

oe

Accd = BCF.Accd;
bccd = BCF.bccd;
nccd = size(Accd,l);

elemV = 0; degreeV = 1;

RefE = SetReferenceElementStokes 3 (elemV,degreeV);
[Ku, ful StokesSystem 3 (X,T,RefE);

[Tf, Tu] = boundaryMatrices (X, T,RefE);

N = RefE.N;

Nxi = RefE.Nxi;

Neta = RefE.Neta;

pospg = RefE.GaussPoints;

wpg = RefE.GaussWeights;

% Matrices obtained by discretizing the Galerkin weak-form
M = CreMassMat (X, T, pospg, wpg, N,Nxi,Neta) ;

K = CreStiffMat (X, T, pospg, wpg,N,Nxi,Neta) ;

K1 = Nu*K + Sig*M; $SREACTION TERM INCORPORATED
% Initial condition

SolF = cF;

SolG = cG;

dSolF = [];

%Conv = solve U(cF,Ku, fu,Tf, Tu,NuU, npoin, BCu);

% Loop to compute the transient solution
WG = 0;

oe

Conv = solve U(cF,Ku, fu,Tf, Tu,NuU, npoin, BCu) ;
C = CreConvMat (X, T, Conv, pospg, wpg,N,Nxi, Neta) ;
Kt = K1 + C;

for i=l:nstep

A =M + dt*W*Kt;

[A Accd'; Accd zeros(nccd)];
Atot = sparse (Atot);

% Factorization of matrix Atot
[L,U] = lu(Atot):;

L = sparse(L);

U = sparse(U);
F

pd
jrt
(@]
o
Il

= —dt*w*Kt*cF ;
F = [F;bccd];
dc = U\ (L\F);
dc = dc(l:npoin);
dSolF = [dSolF dc];
cF = cF + dc;
SolF = [SolF cF];

[cG] = solve G(M,K,PR,cG,SolF,dSolF,BCG,i,dt,W,w,npoin);
SolG = [SolG cG];
end

Subroutine: Galerkinl_3IT (Time integration - Iterative)

function [SolF , SolG] = Galerkinl 3IT(X,T,PR,BCu,BCF,BCG,cF,cG,W,w,dt,nstep,npoin)
Sol = Galerkin (X, IEN,Conv,nu, f,c,Accdl,bccdl, T,s,beta,dt,nstep)

This function computes solution for a transient convection-diffusion equation

% at different time instants.

oe

o

oe

Galerkin method is used to perform spatial discretization.

o

oo

Input:
X: nodal coordinates
T: connectivities
Conv: velocity field
nu: diffusion
f: source term
c: initial condition
Accdl, bccdl: matrices to impose boundary conditions using Lagrange multipliers
W,w,beta: matrices for the time-integration scheme
dt: time-step
nstep: number of time steps
F PARAMENTERS
Nu = PR.NukF;
Sig = PR.SigF;
% VISCOSITY (u)
NuU = PR.NuU;
% BC MATRICES
Accd = BCF.Accd;
bccd = BCF.bccd;
nccd = size(Accd,l);

A o° O° d° AP A° o° d° d° o

o

elemV = 0; degreeV = 1;

RefE = SetReferenceElementStokes 3 (elemV,degreeV);
= StokesSystem 3(X,T,RefE);
boundaryMatrices (X, T,RefE) ;

= X
Hh &
H
c g
o

N = RefE.N;

Nxi = RefE.Nxi;

Neta = RefE.Neta;

pospg = RefE.GaussPoints;

wpg = RefE.GaussWeights;

% Matrices obtained by discretizing the Galerkin weak-form
M = CreMassMat (X, T, pospg, wpg, N,Nxi,Neta) ;

K = CreStiffMat (X, T,pospg,wpg,N,Nxi,Neta) ;

K1 = Nu*K + Sig*M; SREACTION TERM INCORPORATED
% Initial condition

SolF = cF;

SolG = cG;

dSolF = [];

tol = le-8;

o)

% Loop to compute the transient solution
for i=l:nstep

% SOLUTION OF F”(n+l) (INITIAL APPROXIMATION)

C = CreConvMat (X, T,Convo, pospg, wpg,N,Nxi,Neta) ;
Kt = K1 + C; % FIRST APPROXIMATION OF L.H.S MATRICES

Ko = Kt; % R.H.S MATRICES (CONSTANT INSIDE ITERATIVE PROCESS)
A =M+ dt*W*Kt; % TOTAL L.H.S MATRICES
Atot = [A Accd'; Accd zeros(nccd)];

Atot = sparse (Atot);
% Factorization of matrix Atot
[L,U] = lu(Atot):;

L = sparse(L);

U = sparse(U);
F
F

(M + dt* (W-w) *Ko) *cF ; % cF 1is FIXED (F"n)
[F;bccd];

sol = U\(L\F);

cFo = sol (l:npoin); % FIRST APPROXIMATION FOR F” (n+l)
it = 1;
while it < 100

disp (it)

Conv = solve U(cFo,Ku, fu,Tf, Tu,NuU,npoin,BCu);% k+l APPROX. FOR U”"(n+l)

DelU = max (max (abs (Convo-Conv))) % MAX ABSOLUT INCREMENT IN U at n+1
Convo = Conv; % UPDATE U

% SOLUTION OF F” (n+l) (ith APPROXIMATION)

C = CreConvMat (X, T,Convo, pospg, wpg,N,Nxi,Neta) ;% k+1 APPROX FOR C” (n+1)

Kt = K1 + C; % UPDATED OF L.H.S MATRICES
A =M + dt*W*Kt; % UPDATED TOTAL L.H.S. MATRICES
Atot = [A Accd'; Accd zeros(nccd)];

Atot = sparse (Atot);

% Factorization of matrix Atot

[L,U] = lu(Atot):;

L = sparse(L);

U = sparse(U);

F = (M+ dt*(W-w) *Ko) *cF ; % cF is FIXED (F”"n)

F = [F;bccd];

sol = U\(L\F);

cFl = sol(l:npoin);

DelF = max (abs(cFl-cFo)); % MAX ABS. INCREMENT F(k+1l) - F(k) at t = n+1l
cFo = cF1l; % k+1 APPROXIMATION FOR F” (n+1)

if DelU < tol && DelF < tol
fprintf ('\nConvergence achieved in iteration number %$g\n',it);

break
end
it = it + 1;
end

oe

INCREMENT IN THE SOLUTION AT i+l (DF”(i+1))
VECTOR OF INCREMENTS

SOLUTION AT i+1 (F”(i+1))

VECTOR OF SOLUTIONS (F)

dc = cFo - cF;
dSolF = [dSolF dc];
cF = cFo;

SolF = [SolF cF];

o oo

oe

[cG] = solve G(M,K,PR,cG,SolF,dSolF,BCG,i,dt,W,w,npoin);
[SolG cG];

0n
O
=
(&}
Il

end

Subroutine: Solve_G (Time integration of G)

function [cG] = solve G(M,K,PR,cG,fl,f2,BCG,1i,dt,W,w,npoin)
% G PARAMENTERS

Nu = PR.NuG;

Sig = PR.SigG;

k = PR.c;

% BC MATRICES

Accd = BCG.Accd;

bccd = BCG.bccd;

nccd = size(Accd,l);

Kt = Nu*K + Sig*M; $REACTION TERM INCORPORATED and NO C MATRIX
A = M + dt*W*Kt;

B = k*dt*W*M;

Atot = [A Accd'; Accd zeros (nccd)];

Atot = sparse (Atot);

% Factorization of matrix Atot
[L,U] = 1lu(Atot);

L = sparse(L);

U = sparse(U);

% Source term

Mf = k*M*fl; %%FORCE TERM FROM F
F [1;

F = w*dt* (-Kt*cG + Mf(:,1));
F=F + B*f2(:,1);

F = [F;bccd];

dc = U\ (L\F);

dc = dc(l:npoin);
cG = cG + dc;

Subroutine: Solve_U (Solve for U)

function velo = solve U(FF,K, £, Tf, Tu,NuU, nPt, BC)
A DirBC = BC.A;
b DirBC = BC.b;
nDir = BC.nDir;

B = NuU*K + Tu;
fa = £ - TE*FF;

%% Total System of Equations

Atot = [B A DirBC'
A DirBC zeros (nDir,nDir)];
btot = [fa ; b _DirBC];

sol = Atot\btot;
velo = reshape(sol(l:2*nPt), 2, [])';

	Introduction
	Problem I
	Weak Formulation and solution method
	Results

	Problem II
	Weak Formulation and solution method
	Stabilized formulation for P1P1 interpolation

	Results

	Problem III
	Weak Formulation and solution method
	General Procedure: Iterative Method to solve the coupling u/F
	Simplified Procedure to solve the coupling u/F

	Results

	5 Annex - MatLab Routines

