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1) Assignment Statement 

This is the report for Assignment_2 of the course “Finite Element in Fluids” which deals with the 

cavity flow problem as the standard benchmark test for incompressible flows. The goal of this 

assignment is to analyze and get familiar with some behaviors of the Stokes and the Navier-Stokes 

equation. Two Matlab codes namely mainStokes.m for Stokes problem and mainNavierStokes.m 

for Navier-Stokes problems are provided and there would be some modifications in each one in 

order to run properly as one of the tasks of the assignment. 

 

The figure below shows a schematic representation of the problem setting. It represents a plane 

flow of an isothermal fluid in a square lid-driven cavity in which the upper side of the cavity moves 

in its own plane at unit speed (horizontally from left to right), while the other sides are fixed. The 

two upper corners are considered (from pressure point of view) to belong to the top moving side 

which introduces a singularity in the pressure field precisely at those two upper corners. So, there 

is a discontinuity in the boundary conditions at two upper corners of the cavity and we will witness 

this effect. 

 

Finally, it should be mentioned that Dirichlet boundary conditions are imposed on the whole 

boundary and as commented in the class and also in the main reference book, “Finite Element 

Methods for Flow Problems” by Jean Donea and Antonio Huerta, this implies that pressure would 

be known in infinite manners up to a constant. So to make it specific, at an arbitrary point, namely 

the lower left corner of the cavity, the reference value p = 0 is prescribed in the code. 

  

Stokes : Incompressible highly viscous flows 

Navier-Stokes : Incompressible convective viscous flows  
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2) Stokes Problem 

a) Element selection effect 

In this part we are going to solve the cavity problem for the Stokes equation using the standard 

Galerkin formulation. Figure1 and Figure2 portray the pressure distribution and the streamline 

representation in the domain due to this highly viscous (nu=1) incompressible flow.  

As for the element types, 4 main cases is chosen to study: 

ELEMENT TYPE ORDERS 

Q2/Q0 Quadrilaterals 2nd order velocity – constant pressure 

Q2/Q1 Quadrilaterals 2nd order velocity – 1st order pressure 

P1/P1 Triangular 1st order velocity – 1st order pressure 

MINI P1+/P1 Triangular 1st order velocity with bubble function – 1st order pressure 

 

As it can be seen in Figure1 and Figure2, we have captured the pressure singularity at two upper 

corners (the values are opposite to each other because of the direction of flow) and the 

streamlines are symmetric with respect to the vertical centerline, as it was expected. This 

distribution of streamlines is almost the same for all cases except the P1/P1. 

Figure1 and Figure2 in the 3rd row show that for P1/P1 which is not a LBB satisfactory element, we 

can observe has the anticipated oscillations in pressure and also some additional curves in the 

streamline. 

Both the Mini and the Q2Q1, which are LBB compliant, show, reasonable results for pressure, as 

expected. The Q2/Q0 due to its constant nature for the pressure, shows discontinues pressure 

distribution. 
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Figue1. Pressure distribution Figue2. Streamline 

  
Q2/Q0 Q2/Q0 

  
Q2/Q1 Q2/Q1 

  
P1/P1 P1/P1 

  
MINI P1+/P1 MINI P1+/P1 
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b) Mesh refinement effect 

Using the provided code, another analysis is exerted regarding the mesh refinement effects. 

Namely, for the Q2/Q1, as one of the LBB compliant methods, we have conducted an analysis 

using 20*20 mesh once in a regular manner and then in a refined shape on sides and corners. We 

can clearly observe that the pressure jump between two upper corners would be improved if a 

non-uniform mesh (more refined in corners) is employed, since more emphasis and focus (fine 

mesh) is put on the places with pressure singularity. 

Figue3. Pressure distribution Figue4. Streamline 

  

Q2/Q1 regular 20*20 mesh Q2/Q1 regular 20*20 mesh 

  

Q2/Q1 refined 20*20 mesh on sides Q2/Q1 refined 20*20 mesh on sides 

 

c) GLS stabilization effect 

As it is discussed amply in the class and in the reference book, the final matrix form for the GLS 

stabilized Stokes equation is as following. In this equation two terms are added to the original non 

stabilized equation system, namely C and g. The expressions for required terms are provided in the 

table below [reference book equation 6.28]: 

*
  
   

+ *
 
 
+  [

 
 
] 
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K  (   )   ∫    

 

       ∫     (    )

  

   

G  (   )   ∫  

 

       ∫    (     )

  

   

C  ∫  

 

          ∫  

 

            

g  ∫  

 

         ∫  

 

          

As for the stabilization parameter the formulation provided in the reference book is used: 

    
  

  
 
 

 
 
(
 
  )

 

   
            

As expected, the GLS stabilization method deletes all oscillations regarded the non LBB complaint 

P1/P1 element type. This fact is studied both in pressure distribution and streamline curves. 

Figue5. Pressure distribution Figue6. Streamline 

  

P1/P1 non-stabilized P1/P1 non-stabilized 

  

P1/P1 GLS-stabilized P1/P1 GLS-stabilized 
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3) Navier-Stokes Problem 

In this part we are going to solve the Navier-Stokes equations. The script mainNavierStokes.m can 

be used to solve this equation adopting Picard method. In order to be able to use it, a Matlab 

function ConvectionMatrix.m is written to evaluate the matrix arising from the discretization of 

the convective term. 

 (      )  ∫   (    ) 

 

   

The Navier-Stokes equation using a structured mesh of Q2Q1 elements with 15 elements per side 

is solved (due to some problems with RAM capacity, it was not possible to model 20*20 mesh). 6 

Reynolds numbers Re = 100, 200, 500, 1000, 1500 and 2000 are considered for the analysis. 

The steady Navier-Stokes solution is characterized by the Reynolds number:    
  

 
   Where   is 

the kinematic viscosity of the fluid. The reference velocity is the velocity of the moving side [V = 1] 

and the reference length is the side length of the cavity [L = 1]. 

The influence of the Reynolds on the streamline can be clearly seen in Figure8 and Figure10 where 

the position of the main vortex moves towards the center of the cavity (which is highlighted by the 

red arrow in Figures) when the Reynolds number increases. Moreover the development of second 

vortex in the right bottom corner of the cavity becomes clear by increasing the Re number (the 

orange circle in Figure 10). 

Figure7 and Figure9 also visualize the pressure response for the cavity flow, in which the value of 

jump in pressure in corners converges to a lower quantity but we still have this phenomenon in all 

Re numbers, as expected due to the nature of problem. We may also capture a slight decrease in 

the value of pressure in the middle of domain compared to the sides in high Re numbers. 

As a conclusion one can say that by increasing the Re number due to the highlighted effect of 

convection, both the nonlinear term and also the natural oscillation due to the convection 

dominated flows, become effective. So, the number of iterations goes higher and the need to use 

lower Re number’s results for capturing higher one’s with less effort becomes necessary. Table 

below provides the number of iteration for each case: 

Table. Number of iterations for each case of Navier-Stokes analysis with different Re # 

Initial velocity Re 100 Re 200 Re 500 Re 1000 Re 1500 Re 2000 

Non 10 14 21 46 66 - 

Re 200 - - 19 - - - 

Re 500 - - - 39 - - 

Re 1000 - - - - 50 - 

Re 1500 - - - - - 139 
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Figue7. Pressure distribution Figue8. Streamline 

  

Re = 100 Re = 100 

  

Re = 200 Re = 200 

  

Re = 500 Re = 500 
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Figue9. Pressure distribution Figue10. Streamline 

  

Re = 1000 Re = 1000 

  

Re = 1500 Re = 1500 

  

Re = 2000 Re = 2000 

 


