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1. Introduction 

Actin plays an important role in cells motility. Lately, different models have been proposed to 
predict the concentration of actin monomers and filaments and their interaction with the 
mechanics of cell cortex and cytosol.  

2. Goal 

Here, we will try to solve a simplified model for density of actin filaments and monomers coupled 
with the cortex’s mechanics. First, we will propose to solve a transport problem to obtain the 
actin densities. Then, we solve a Stokes problem to obtain the velocity and pressure distribution 
of the fluid surrounding the actin filaments and monomers. Finally, a coupled problem is 
proposed to account for the interaction of the actin filaments and the cortex. 

3. Domain 

All problems will be solved in the domain Ω shown in the figure below. 

 
Figure 1: Domain. 

4. Meshes 

In Figure 2 can be observed the different meshes used for the different problems to be solved. 

Figure 2: Different meshes used in different problems. A) and C) Mesh made with Quad4 (Q1) elements, B) Mesh 
made with Quad9 (Q2). 

Q1 mesh is shown in Figure 2 A) was used in the problem number 1 and 3 in order to compute 
the densities scalar fields F and G and the velocity vector field u. On the other hand, Meshes B 
(Q2) and C (Q1) were used, in problem number 2, in order to compute the velocity vector field 
and the pressure scalar field respectively. 

A) B) C) 
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Q1Q1 elements were used in the problem number 1 and 3, and Q2P1 elements were used in 
order to avoid to use stabilization methods. 

5. Problems 

In this section will be shown different problems to be solved. The first problem corresponds to 
a couple transport system, the second one is related with a Stokes problem and the last one is 
a couple problem. 

 Transport problem 

The actin filaments and monomers densities (F and G) are modelled by the following coupled 
system of partial differential equations.  

2
F F

2
G G GF

F
u F D F F

t

G
D F G F

t


     




   



 

Where u is the fluid velocity and it was considered following the next expression. 

1
u(x,y) (r x,r y) m/ s

1500


   

Where: 

2 2r x y   

And the other parameters are:  

1 1 1
F G F G FGD 5 m / s D 15 m / s 0.25s  2s  0.5s             

It was considered the following boundary conditions: 

F (r=25) = 80 μM, the filament density is constant at the upper boundary. No Neuman bc were 
considered. 

Time discretization: The theta method 

It was considered a theta method in order to discretize in time. Crank-Nicholson scheme (θ=0.5) 
was used in order to get a second order of accuracy and an unconditionally stable method. 

2 2 n
F F F F

2 2 n n
G G FG G G FG

F
0.5 u D F u D F

t
G

0.5 D G 0.5 F D G F
t


               


                   

 

Space discretization: Galerkin formulation of theta method 

The variational form associated with the theta family method, in particularly, Crank-Nicholson 
is: 

V≔HΓD

1 (Ω)={wϵH1(Ω)|w=0 on ΓD} 

�w,
∆F

∆t
� - ��w,θ�-u.∇(∆F)�� +�w,θDF∇2(∆F)�-�w,θσF(∆F)�� =(w,-u.∇Fn)+(w,DF∇2Fn)-(w,σFFn)  

 



4 

 

�w,
∆G

∆t
� - ��w,θDG∇2(∆G)�-�w,θσG(∆G)�+�w,θσ�GF(∆F)�� =(w,DG∇2Gn)-(w,σGGn)+(w,σ�GFFn)  

Using the divergence theorem, the diffusion term that contains the second derivative of the 
variable can be broken down into two first order derivative 

 

�w,
∆F

∆t
� - ��w,θ�-u.∇(∆F)�� -�∇w,θDF∇(∆F)�-�w,θσF(∆F)�� =(w,-u.∇Fn)-(∇w,DF∇Fn)-(w,σFFn) 

 

�w,
∆G

∆t
� - �-�∇w,θDG∇(∆G)�-�w,θσG(∆G)�+�w,θσ�GF(∆F)�� =-(∇w,DG∇Gn)-(w,σGGn)+(w,σ�GFFn) 

Afterwards, with the definition of �ℎ and �ℎ the discrete weak form is obtained. 

Fh(x,t)= � NA(x)FA(t)

A∈η/ηD

+ � NA(x)FD(xA,t)

A∈ηD

 

The same routine is taken for G. 

wh∈Vh≔span{NA}  

Mab= � NaNbd

Ω

Ω 

Cab= � Na(u.∇Nb)d

Ω

Ω 

Kab= � ∇Na(ν∇Nb)d

Ω

Ω 

Finally, the equations in matrix form are obtained as the following: 

(M+θC∆t+θDFK∆t+θσFM∆t)Ḟ-(C∆t+DFK∆t+σFM∆t)F=0  

(M+θDGK∆t+θσGM∆t)Ġ-(DGK∆t+σGM∆t)G=σ�GFM∆t(θḞ+F)  

Results 

In order to obtain different results for F and G, were used the following time parameters: 
Time end = 10 seconds. 
Number of time steps = 120 
Time increment = t_end/nstep = 0.0833 

Figure 3 shows the F and G densities surface plot, and F and G isolines. 
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Figure 3: Results at t = 10 sec. A) F density scalar field, B) G density scalar field, C) Isoline of F density, D) Isoline of G 
density. 

In Figure 3 C can be observed that the filament density remained constant at the upper boundary 
along the time and equal to 80. This is in accordance with the Dirichlet boundary condition 
applied. 

According to the time and space discretization methods used, the solution for both F and G 
densities remained stable along the time and independently to the mesh size. Second accuracy 
in time and first accuracy in space were reached.  

Were chosen two different nodes in order to plot the temporal evolution of the densities. In 
figure bellow can be seen that the G density starts reaching a steady regimen at t = 3 sec, while 
F density starts reaching a steady regimen at t = 6 sec.  

 
Figure 4: Temporal evolution of F and G densities using two different nodes. 

The remark written above could be related to the fact that the diffusion velocity of G Acting (DG) 
is greater than the diffusion velocity of F Acting (DF), so, the diffusion of the G Acting density 
reaches a steady condition much faster than the F Acting density. This observation is related to 
the fact that G Acting (monomer) is smaller than F Acting (polymer made with monomers of G 
Acting). 

 Stokes problem 

The stokes system of equation to be solved is: 

A) B) 

C) D) 
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0

.u 0

 

 
 

With the following boundary conditions: 

r

r

u (r 15) 0.15,  u (r 15) 0

u (r 25) 0.30,  u (r 25) 0





    

    
 (Prescribed velocities) 

Zero traction on the straight sides of the boundary. 

It was considered kinematic viscosity 310 pN s / m   . 

Space discretization 

Before starting to discretize the Strokes equation, it was necessary to express this equation in 
terms of pressure and velocity using the following expression so-called Stokes’ law. 

sp S(v) p u           

Where S(v)  is the deviatoric part of  . 

So, the Stokes equation will be: 
s( u) p 0

.u 0

   

 
 

Multiplying with vector function w and scalar function q, we obtain: 

(w, (S(v))) (w, p) 0

(w, .u) 0

   

 
 

After using integration by part and divergence theorem, the weak formulation of Stokes problem 

will be: find (u ,p) SxQ , such that: 

a(w,u) b(w,p) 0

b(u,q) 0

 


 

Where: 

a(w,u) w: C : ud



     

b(w,p) p wd


     and b(q,u) q ud


     

Now, invoking Galerkin formulation of the Stokes problem, may then be stated as follow:  

Find 
h h h hu V  and p Q  , both velocity and pressure respectively, such that: 

h h h h

h h

a(w ,u ) b(w ,p ) 0

b(u ,q ) 0

 


 

And using shape functions for velocity and pressure, then, the weak form of the problem 
becomes in a matrix problem.  

T

Ku Gp 0

G u 0

 


 

Where: 

e

e

e

T

e

T
p

e

T T
q

e

K B C Bd

G N ( N)d

G N ( N)d









 

   

   

 

 

 
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Results 

Next figure shows different results obtained for this problem. It can be observed, the pressure 
scalar field, components of velocity and its modulus.  

  

  

 

Figure 5: Results. A) X component of Vel., B) Y component of Vel., C) Velocity modulus, D) Pressure. 

Several remarks can be said. Firs of all, how it expected, Q2P1 elements have given a stable 
solution without numerical oscillations. Second, it can be seen, in Figure 5 C, Dirichlet boundary 
conditions on the upper boundary and equal to 0.30 and on the lower boundary and equal to 
0.15, both values expressed in absolute value. Third, Y component of velocity (Vy) became 
dominant in the whole domain, in comparation whit X component of velocity (Vx), this remark 
can be observed in Figure 5 A and B. Finally, zero pressure was observed on the straight sides of 
the boundary. On the other hand, it was observed a high-pressure level at each corner of the 
domain. 

 Coupled Problem 

The equation describing the evolution of monomers densities G does not involve any convective 
transport and, therefore, only the fluid around the fibers has to be considered. This fluid is 
modelled using the equations of a quasi-steady viscous fluid. Moreover, due to the presence of 
actin fibres, the incompressibility constrain is dropped and pressure is neglected. Then, the 
equations governing the coupled problem can be written as 

 s

m m

2
F F

2
G G GF

1) u (F) T (u) 0

F
2) u F D F F

t

G
3) D F G F

t

    


     




   



 

Were considered the same boundary conditions used in the previous problems: 

F (r=25) = 80 μM, the filament density is constant at the upper boundary. No Neuman bc were 
considered. 

A) B) 

C) 

D) 
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r

r

u (r 15) 0.15,  u (r 15) 0

u (r 25) 0.30,  u (r 25) 0




    

    
 (Prescribed velocities) 

Zero traction on the straight sides of the boundary.  

It was considered kinematic viscosity 310 pN s / m   , and the following time parameters were 

used: 
Time end = 10 seconds. 
Number of time steps = 120 
Time increment = t_end/nstep = 0.0833 
 
Discretization 
Equation 2 and 3 were discretized using the discretization written in the first problem. Equation 
1 was only discretized in space. 

Time discretization: The theta method 

It was considered a theta method in order to discretize in time. Crank-Nicholson scheme (θ=0.5) 
was used in order to get a second order of accuracy and an unconditionally stable method. 

2 2 n
F F F F

2 2 n n
G G FG G G FG

F
0.5 u D F u D F

t
G

0.5 D G 0.5 F D G F
t


               


                   

 

Space discretization: Galerkin formulation of theta method 

The variational form associated with the theta family method, in particularly, Crank-Nicholson 
is: 

 

 

n n n
F F F F

n n n
G G FG G G FG

F
(w, ) 0.5 c(u;w, F) a(w,D F) (w, F) c(u;w,F ) a(w,D F ) (w, F )

t
G

(w, ) 0.5 a(w,D G) (w, G) 0.5(w, F) a(w,D G ) (w, G ) (w, F )
t


             


               

 

Space discretization: Galerkin formulation of Stokes equation 

Here, we will use some equation used in previous problems. 

First of all, in order to obtain a weak form of the equation, integration by parts will be applied 
in the first term. The Identity written bellow will be used in order to obtain the weak form of the 
equation. 

      s

m mw, u w, (F) w,T (u) 0       

   s s s
w u w : u w ( u)        

Using divergence’s theorem and rewrite some terms,  

s
w u nd



    s

m mw : u d w (F) w T d 0
  

           

Finally, the equation is: 

   s

m ma( w, u) w, (F) w,T (u) 0       

At the end, the system of equation to be solved is: 
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f u

n
F F F F

n n
G G FG G G FG

Ku T F T u 0

1
M F 0.5 C D K M F C D K M F

t
1

M G 0.5 D K M F 0.5 F D K M G F
t

  

              

                

 

Remark: Tf and Tu: These two matrices arising from the discretisation of    m mw, (F) w,T (u)   

respectively. 

Results 

In Figure 6 can be observed different results obtained.  

 
 

 
 

  

 

 
Figure 6: Results. A) F density scalar field, B) Isoline of F density, C) G density scalar field, D) Isoline of G density E) X 

component of Vel., F) Y component of Vel., G) Velocity modulus, H) Velocity vector field. 

G) 

C) 

D) 

E) F) 

A) 

B) 

H) 
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As was expected, numerical oscillations were not observed. In order to prove if the Dirichlet 
boundary conditions were applied properly, in Figure 6 A y G can be observed the Dirichlet 
boundary condition value applied on the upper and lower boundaries. An important remark, in 
Figure 6 G the Dirichlet boundary values were expressed in absolute value. 

In Figure 6 H can be seen the velocity direction. As it expected the velocity direction on upper 
and lower boundary is on radial direction. On the other hand, it can be seen the velocity goes 
out to the domain.  

As equal to the second problem, Y component of the velocity became dominant in the whole 
domain. It can be observed, in Figure 6 F, a jump from nodes belong to the upper boundary to 
next nodes. This drastically change in velocity could be associated to a boundary layer presence. 


