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1 Steady Coupling

1.1 Problem Description

The problem presented consists in a coupling between the Stokes and Transport equations.

The coupling appears in Stokes equation with the viscosity dependent on density and in the

transport equation with the convective and source terms dependent on velocity. This problem

can be understood as pollutants (ρ) being carried by a very viscous �ow (u). The parameters

used in this problem will be the same as were used in questions 1 and 3.

For the Transport equation, the domain of (2, 3) is chosen with the boundary conditions ρ = 0
in Γ2 and ρ = 1 in Γ4. The initial viscosity parameter is ν = 10−8, the di�usivity is µ = 10−8

and no source term was considered. For the Stokes equation, the cavity con�guration was

chosen, with the same domain as the transport problem but with the boundary conditions

vy = −1 in Γ2.

1.2 Implementation

In order to solve this problem, 2 strategies were considered. The �rst one was to solve the

problem in a monolithic way, computing the residuals and derivatives of the residuals of

each equation and solving the problem simultaneity. Due to consistency problems with the

computation of pressure, this strategy was discarded.

The second strategy was to solve the problem iteratively in a "brute force" manner. It consists

in solving the equations separately and recomputing with the new values until the residuals

are small enough. The algorithm is described in Figure 1.1. First a initial guess of velocity

is made and with that the transport equation is computed using the guessed velocity on the

convective term. With the values of density, the viscosity can be calculated and with that

the Stokes equation. Now with v and ρ, the residuals of each equation can be computed as

Rρ = |ρk+1 − ρk| and Rv = |vk+1 − vk|. If the residuals are small enough, the calculation

is complete, if not, the algorithm restarts with the new values of velocity and density until

convergence.

The Q2Q1 element for velocity and pressure was chosen for this implementation together with

quadratic quadrilaterals for density. This facilitates the implementation because, with this

set up, the number of nodes and gauss points of velocity and density are the same, making it

easier to make the evaluation of each variable on the integration points.
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Figure 1.1: Iterative algorithm to solve the coupled problem.

1.3 Results

In order to obtain reasonable results, a space discretization of h = 0.1 (same as the one used

on the previous report) was chosen. Also, the tolerance of the iterative scheme was chosen to

be 10−4 for both residuals. A SUPG stabilization scheme was used for the transport equation

in order to avoid oscillations. The convergence analysis of the problem can be seem in Figure

1.2. It can be observed that only 18 iterations was required to converge both equations. It is

important to notice that the Stokes equations converge signi�cantly earlier then the Transport

equation, which may be due to the fact that the density �eld is highly a�ected by the velocity

values trough the convective term.
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Figure 1.2: Convergence analysis of the iterative scheme using a tolerance of 10−4 and h = 0.1.

The �nal converged results of the Stokes and Transport problem can be seem in Figures 1.3 and

1.4. It can be observed that the density results are highly a�ected by the velocity �eld. The

density concentrates in the the same region as the big vortex present in the cavity problem,

meaning that the density is being "carried" by the �ow, which is an expected result. The

velocity and pressure �elds are not altered so much by coupling with the density equation.

This happens because in the provided viscosity-density relation, the values of ρ do not a�ect

the initial viscosity ν0 enough so more visible results can be seem. In fact, considering the

maximum values reached by density, the viscosity is only changed by a factor of 1.8.

It is important to note that this implementation is very sensible to the input parameters

choosing. Some values of initial viscosity and di�usivity may not reach convergence, which

also happens with more complicated relations between viscosity and density.
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Figure 1.3: Results for the density �eld of the coupled stokes-transport problem.

(a) Pressure �eld
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Figure 1.4: Results for the stokes equation �eld of the coupled problem.

2 Unsteady Coupling

For this case, a fully coupled approach was intended, although it couldn't be �nished due to

lack of time. Nevertheless, the linearisation and the conceptual approach followed is shown in

this section.

2.1 Weak form and residual for Stokes equation

The strong form of the equation reads

ut −∇ · (ν∇)u−∇p = 0
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Discretizing in time using a Backward Euler scheme the equation can be written in its residual

form as

Ru =
un+1 − un

∆t
−∇ · (ν∇)un+1 −∇pn+1 = 0

Integrating and weighting each member by a vectorial test function w

Ru =

∫
Ω
w · u

n+1 − un

∆t
dΩ−

∫
Ω
w · ∇ · (ν∇)un+1dΩ−

∫
Ω
w · ∇pn+1dΩ = 0

Integrating by parts, and dropping the integration along the Neumann boundary (as all of

them are of Dirichlet type)

Ru =

∫
Ω
w · u

n+1 − un

∆t
dΩ +

∫
Ω
ν∇w : ∇un+1dΩ +

∫
Ω

(∇ · w)pn+1dΩ = 0

We discretize in space with Galerkin method

u = uh = Nu
iBuiB p = ph = NP

BPB w = NiA

The �nal weak residual is

Ru =

∫
Ω
Nu
iA

Nu
iBu

n+1
iB −Nu

iBu
n+1
iB

∆t
dΩ +

∫
Ω
νh∇Nu

iA : ∇Nu
iBuiBdΩ +

∫
Ω

(∇ ·Nu
iA)Np

iBuiBPBdΩ = 0

With the discretized viscosity law

νh = ν0 + ν0
1

(1− exp(−10Nρ
CρC − 0.5)

2.2 Weak form and residual for Convection-Di�usion equation

The strong form of the equation reads

ρt − u · ∇ρ−∇ · (µ∇ρ) = s(u)

Using the same time discretization, integrating and weighting (with a scalar test function) we

obtain the following weak residual form

Rρ =

∫
Ω
v
ρn+1 − ρn

∆t
dΩ−

∫
Ω
v∇ · (µ∇)ρn+1dΩ +

∫
Ω
vu · ∇ρn+1dΩ−

∫
Ω
vsn+1(u) = 0

The unknown and the weight are discretized as following

ρ = ρh = Nρ
BρB v = Nρ

A

The �nal residual form is

Rρ =

∫
Ω
Nρ
A

Nρ
Bρ

n+1
B −Nρ

Bρ
n
B

∆t
dΩ +

∫
Ω
µ∇Nρ

A · ∇N
ρ
Bρ

n+1
B +

∫
Ω
Nρ
AN

u
iCu

n+1
iC ∇N

ρ
Bρ

n+1
B dΩ

−
∫

Ω
Nρ
A

1

1 + exp(−10(||Nu
iCu

n+1
iC ||)− 0.5)
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2.3 Linearisation

We derive each residual by the three variables, to get the following expressions

∂Ru
∂uiB

=

∫
Ω

Nu
iA ·Nu

iB

∆t
dΩ +

∫
Ω
νh(ρ)∇Nu

iA : Nu
iBdΩ

∂Ru
∂PB

=

∫
Ω

(∇ ·Nu
iA)Np

BdΩ

∂Ru
∂ρC

=

∫
Ω

[
ν0N

ρ
C10exp(Nρ

Cρ
n+1
C − 0.5)

exp(10(Nρ
Cρ

n+1
C − 0.5)) + 1

]
∇Nu

iA : ∇Nu
iBu

n+1
iB dΩ

∂Rρ
∂uiC

=

∫
Ω
Nρ
AN

u
iC∇N

ρ
Bρ

n+1
B dΩ−

∫
Ω
Nρ
A

[
10(Nu

iC)2un+1
iC exp(10(||Nu

i cu
n+1
iC || − 0.5))

||Nu
icu

n+1
iC ||(exp(10(||Nu

icu
n+1
iC || − 0.5) + 1)2)

]
dΩ

dRρ
dpB

= 0

∂Rρ
∂ρB

=

∫
Ω
Nρ
AN

ρ
B

1

∆t
dΩ +

∫
Ω
µ∇Nρ

A · ∇N
ρ
BdΩ +

∫
Ω
Nρ
AN

u
iCu

n+1
iC ∇N

ρ
BdΩ

We can assemble all the di�erentiated residuals in a partitioned matrix, to obtain the following

system of equations. 
∂Ru
∂u

∂Ru
∂p

∂Ru
∂ρ

∂Rρ
∂u

∂Rρ
∂p

∂Rρ
∂ρ


 δu
δp
δρ

 =

[
Ru
Rρ

]

Imposing the residuals to be zero, the system is solved and the variables are updated in each

iteration as following.

un+1
k+1 = un+1

k + δu

pn+1
k+1 = pn+1

k + δp

ρn+1
k+1 = ρn+1

k + δρ
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