## 2D-Unsteady Transport Problem

## Lei Pan

## I. The behavior of the methods

## 1. Question 1



Figure 1. The result of Lax-Wendroff + Galerkin method


Figure 2. The result of TG3 method


Figure 3. The result of CN method


Figure 4. The result of CN-FD method


Figure 5. The result of LW-FD method


Figure 6. The result of TG4 method

For question 1 , the velocity field is $v(x, y)=(-y, x)$. Under this velocity field, all the methods behave well. But the LW-FD method and CN-FD method have rather poor behavior than other methods because they show more oscillations and we will find this problem in question 2.

## 2. Question 2



Figure 7. The result of CN method of question 2


Figure 8. The result of CN-FD method of question 2


Figure 9. The result of LW-FD method of question 2


Figure 10. The result of TG2 method of question 2


Figure 11. The result of TG3 method of question 2


Figure 12. The result of TG-2S method of question 2


Figure 13. The result of TG4-2S method of question 2

For question 2, the velocity is $\mathrm{v}(\mathrm{x}, \mathrm{y})=(1,0)$. In above results, we can find that the TG2, TG3, TG3-2S, TG4-2S have expected behaviors. But the CN method shows oscillations which means that it's unstable for question 2. For CN-FD and LW-FD, they both work badly. Their results not only oscillate in the domain, but also lose accuracies compared to other methods. For CN and CN-FD method, the reason why they work badly is that they have more phase errors. And for LW-FD, it's because LW-FD uses the diagonal stiffness matrix so it will lose information, which make the method inaccurate.

## 3. Question 3



Figure 14. The result of CN method of question 3


Figure 15. The result of CN-FD method of question 3


Figure 16. The result of LW-FD method of question 3


Figure 17. The result of TG2 method of question 3


Figure 18. The result of TG3 method of question 3


Figure 19. The result of TG3-2S method of question 3


Figure 20. The result of TG4-2S method of question 3

For question 3, the velocity field is $\mathrm{v}(\mathrm{x}, \mathrm{y})=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Like question 2, the TG2, TG3, TG3-2S, TG4-2S work better than CN, CN-FD and LW-FD and the reason is same to question 2. The result of CN shows oscillation and the results of CN-FD and LW-FD shows both oscillations and inaccuracies.

## II. The comments on the code

Because the source term is zero in this part, so we ignore the $f$ in following methods. And the code representations are like following:
$\boldsymbol{K}$ represents the term : $\left(\boldsymbol{a} \cdot \nabla N_{i}, \boldsymbol{a} \cdot \nabla N_{j}\right)$
C represents the term : $\left(N_{i}, \boldsymbol{a} \cdot \nabla N_{j}\right)$

M represents the term: $\left(N_{i}, N_{j}\right)$

$$
\boldsymbol{M}_{\boldsymbol{O}} \text { represents the term }:\left((\boldsymbol{a} \cdot \boldsymbol{n}) N_{i}, N_{j}\right) \text { on } \Gamma_{\text {out }}
$$

$\boldsymbol{C}_{\boldsymbol{o}}$ represents the term : $\left((\boldsymbol{a} \cdot \boldsymbol{n}) N_{i}, \boldsymbol{a} \cdot \nabla N_{j}\right)$ on $\Gamma_{\text {out }}$
$\boldsymbol{M}_{\boldsymbol{d}}$ represents diagonal mass matrix of $\boldsymbol{M}$
$\boldsymbol{M}_{\text {od }}$ represents the diagonal mass matrix of $\boldsymbol{M}_{\boldsymbol{O}}$

## 1. LW method and LW-FD method

The time and spatial discretization:

$$
\left(\omega, \frac{\Delta u}{\Delta t}\right)=\left(\boldsymbol{a} \cdot \boldsymbol{\nabla} \omega, u^{n}-\frac{\Delta t}{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right)+\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, u^{n}+\frac{\Delta t}{2} \cdot \boldsymbol{\nabla} u^{n}\right)_{\Gamma_{o u t}}
$$

The code is :
LW method:

$$
\begin{aligned}
& A=M: \\
& B=d t *\left(C-(d t / 2) * K-M 0+(d t / 2) * C_{0}\right) ; \\
& f=d t *(v 1+(d t / 2) *(v 2-v o)):
\end{aligned}
$$

LW-FD mehod:

```
Md = diag (M*ones (numnp,1)):
Mod = diag (Mo*ones (numnp, 1)):
A = Md;
B = dt* (C - (dt/2)*K - Mod + (dt/2)*Co) :
f}=\textrm{dt}*(\textrm{v}1+(\textrm{dt}/2)*(v2-\textrm{vo}))
```


## 2. CN method and CN-FD method

The time and spatial discretization:

$$
\begin{aligned}
\left(\omega, \frac{\Delta u}{\Delta t}\right)-(\mathbf{a} \cdot & \left.\nabla \omega, \frac{1}{2} \cdot \Delta u\right)+\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, \frac{1}{2} \cdot \Delta u\right)_{\Gamma_{\text {out }}} \\
& =\left(\boldsymbol{a} \cdot \boldsymbol{\nabla} \omega, u^{n}\right)+\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, u^{n}\right)_{\Gamma_{\text {out }}}
\end{aligned}
$$

The code is:
CN method:

```
A =M-(dt/2)*C + (dt/2)*Mo:
B = dt*C - dt*Mo:
f = dt*v1:
```

CN-FD method:

```
Md = diag (M*ones (numnp, 1));
Mod = diag (Mo*ones (numnp, 1)):
A = Md - (dt/2)*C + (dt/2)*Mod:
B = dt*C - dt*Mod;
f = dt*v1:
```


## 3. TG3 method

The time and spatial discretization:
We impose:

$$
g=\frac{u^{n+1}-u^{n}}{\Delta t}
$$

We get:

$$
\begin{aligned}
& (\omega, g)+\left(\boldsymbol{a} \cdot \nabla \omega, \frac{\Delta t^{2}}{6} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) g\right)-\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, \frac{\Delta t^{2}}{6} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) g\right)_{\Gamma_{\text {out }}}=\left(\boldsymbol{a} \cdot \boldsymbol{\nabla} \omega, u^{n}-\frac{\Delta t}{2} .\right. \\
& \left.(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right)+\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, u^{n}+\frac{\Delta t}{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right)_{\Gamma_{\text {out }}}
\end{aligned}
$$

The code is:

$$
\begin{aligned}
& A=\mathrm{M}+(\mathrm{dt} \cdot 2 / 6) *\left(\mathrm{~K}-\mathrm{C}_{0}\right): \\
& \mathrm{B}=\mathrm{dt} *\left(\mathrm{C}-(\mathrm{dt} / 2) * \mathrm{~K}-\mathrm{M}_{0}+(\mathrm{dt} / 2) * \mathrm{C}_{0}\right): \\
& \mathrm{f}=\mathrm{dt} *((\mathrm{dt} / 2) *(\mathrm{v} 2-\mathrm{vo})+\mathrm{v} 1):
\end{aligned}
$$

## 4. TG3-2S method

The time and spatial discretization:
Step 1:

$$
\begin{array}{r}
\left(\omega, \tilde{u}^{n}\right)=\left(\omega, u^{n}\right)+\left(\mathbf{a} \cdot \boldsymbol{\nabla} \omega, \frac{\Delta t}{3} \cdot u^{n}-\alpha \cdot \Delta t^{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right) \\
-\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, \frac{\Delta t}{3} \cdot u^{n}-\alpha \cdot \Delta t^{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right)_{\Gamma_{o u t}}
\end{array}
$$

Where $\alpha=\frac{1}{9}$

The code is:

```
\(\mathrm{A} 1=\mathrm{M}\) :
\(\mathrm{B} 1=-(\mathrm{dt} / 3) * \mathrm{C}^{\prime}-\) alpha*dt \(2 *(\mathrm{~K}-\mathrm{Co}):\)
\(\mathrm{f} 1=(\mathrm{dt} / 3) * \mathrm{v} 1+\) alpha*dt \({ }^{*} 2 *(\mathrm{v} 2-\mathrm{vo}) ;\)
```

Step 2:

$$
\begin{aligned}
(\omega, \Delta u)=(\mathbf{a} \cdot & \left.\nabla \omega, \Delta t \cdot u^{n}-\frac{1}{2} \cdot \Delta t^{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right) \\
& -\left((\boldsymbol{a} \cdot \boldsymbol{n}) \omega, \Delta t \cdot u^{n}-\frac{1}{2} \cdot \Delta t^{2} \cdot(\boldsymbol{a} \cdot \boldsymbol{\nabla}) u^{n}\right)_{\Gamma_{o u t}}
\end{aligned}
$$

The code is:
$\mathrm{A} 2=\mathrm{M}$ :
$\mathrm{B} 2=-\mathrm{dt} * \mathrm{C}^{\prime}$ :
$\mathrm{C} 2=-\left(\mathrm{dt}{ }^{\wedge} 2 / 2\right) *\left(\mathrm{~K}-\mathrm{C}_{0}\right)$;
$\mathrm{f} 2=\mathrm{dt} * \mathrm{v} 1-\left(\mathrm{dt}{ }^{\wedge} 2 / 2\right) *(\mathrm{v} 2-\mathrm{vo})$ :
5. TG4-2S

The TG4-2S method is same to TG3-2S method except that the $\alpha$ in TG4-2S method is equal to $\frac{1}{12}$.

