Finite Elements in Fluids:
Course Assignment

CORBELLA COLL, Xavier
xcorbellacoll@gmail.com

May 23, 2016

Exercise 1: Steady state

Consider a steady convection-diffusion-reaction problem with the unknown

"p", convective term "a", reaction term "¢" and source term "s".

a)
Use weighted residuals to derive the weak form for convection-diffusion-reaction

problem. Write down the system you obtain after discretizing this weak form
using Galerkin’s method and an approximation of the solution:

p"(x) = ZPij (x)

The steady convection-diffusion-reaction equation is:
a-Vp—V-wVp) +op=s

The first step is to pre-multiplicate it by a test function w:

/wa-Vde— / wV - (vVp) dQ—i—/wade = / wsdS)

Q Q Q Q
If we integrate by parts the diffusion term
/ wV - (vVp)dQ) = —/ Vuw- (vVp)dQ + / V (wvVp) dQ) =
Q Q Q

:—/Vw-(UVp)dQ—l-/wn'(VVp)dF:—/Vw-(l/Vp)dQ+/whNdF
Q r 0 r

then we get:

/wa-Vde—i—/Vw-(l/Vp)dQ+/w0de:/wsdQ+/whNdI‘
Q Q Q Q r

Discretizing (p & p") and using Galerkin’s method (w = N):

Q Q Q Q r
This can be expressed as the following system of equations:

Dp+ Ap+Rp=f

Where D is the diffusion matrix, A the convection matrix and R the reaction matrix, and
f the vector of "forces".

b)

Modify the Matlab code to solve this problem using Galerkin formulation
with linear elements, a spatial discretization h = 0.2 and:

l.a=1, v=10"3, o=10"3 s=0
2.a=10"3% v=10"3% o=1, s=
3.a=1, v=10"3, o0=0, s=1
4.a=1, v=10"3, o=1, s=0

The boundary conditions are:
p=1 inl,

p=0 inly

In case that the solution is not acceptable in any of the cases above pro-
pose how you would overcome the problem without modifying the Galerkin
approach nor changing a, v, o and s.

Since the code was already able to use Galerkin’s method, it only had to be modified
to add the reaction term, change the geometry (2 = (0,2)z(0,3) € R?) and use the
parameters and boundary conditions stated above. The result obtained for the different
combinations of coefficients are depicted in figure Il In combinations 1,3 and 4 we can
observe instabilities and oscillations which appear because it is a convection dominated
problem. The Peclet number

_ alh

2

for combinations 1,3 and 4 is Pe = 100 > 1. We can improve the results obtained if
working with Pe < 1. However, doing so would require to use an element size h < 2-1073
which would require a huge amount of computational resources. In the case of set 2,
Pe = 0.2 and the solution does not exhibit instabilities due to convection. However, the
problem is dominated by the reaction term and the result obtained in the boundary layer
is quite bad and could be improved refining the mesh there. For example, the results
obtained for h = 0.05 are depicted in figure [2|

Pe

(a) Combination of coefficients 1

(c¢) Combination of coefficients 3 (d) Combination of coefficients 4

Figure 1: Results obtained using Galerkin’s method and h=0.2

Figure 2: Results for set 2 using A = 0.05.

c)

Choose one of the set of parameters for which using SUPG and GLS for-
mulations would have sense and explain why. Write the modifications down
and how each method is obtained step by step. Explain the modifications
introduced in the Matlab code and compare the results.

As commented before, for sets 1,3 and 4 we have Pe = 100 > 1. Thus, in this case we
cannot obtain an stable solution via Galerkin’s method when using the mesh proposed in
the statement of the problem. For this mesh, Galerkin’s method is not able to solve for
the convection and spurious oscillations appear. These oscillations can be avoided either
refining the mesh (as said in section b this would be too expensive) or using stabiliza-
tion techniques such as SUPG and GLS formulations. These formulations introduce a
stabilization term in the lhs of the weak form:

Z/Q P (w) TR (p) dS2

Where R (p) is the residual of the convection-diffusion-reaction
R(p)=a-Vp—V - (vVp)+op—s=L(p)—s
7 is a stabilization parameter and P (w) depends on the method used:

SUPG — P(w)=a-Vuw
GLS — P(w)=L(w)=a -Vw—-V-wVw)+ow

The parameter 7 used will be :

1
by 9 (h 2\ °
T_2a Pe? 2@0

The changes done in the matlab code are the calculation of 7 in function 'FEM system’

sif method =— 0
% Galerkin
tau = 0;
elseif method — 1
% SUPG
Pe = axh/(2+nu) ;
tau p = h/(2*xa)*(1 + 9/Pe~2+(h/(2+a)x*sigma) ~2)"(—=1/2);

disp (strcat ('Recommended stabilization parameter = ’ num2str(tau_p)));
tau = cinput (’Stabilization parameter’,tau_p);
if isempty (tau)
tau = tau_p;
end
elseif method = 2
% GLS

Pe = axh/(2*nu);

tau_p = h/(2xa)*(1 + 9/Pe~2+(h/(2%a)=*sigma) ~2)"(—1/2);

disp (strcat ('Recommended stabilization parameter = ’,num2str(tau_p)));
tau = cinput(’Stabilization parameter’,tau p);

if isempty (tau)

tau — tau_p;
end
else
error (’Unavailable method’)
end

and the definition of FEM matrices for the stabilization methods in function ’eleMat’:

% Loop on Gauss points (computation of integrals on the current element)
for ig = 1l:ngaus

N_ig = N(lg 18)) §

Nxi_ ig = Nxi(ig,:);

Neta ig = Neta(ig,:);

Jacob = [Nxi_ig*(Xe(:,1)) Nxi_igx(Xe(:,2))

Neta ig*(Xe(:,1)) Neta ig«*(Xe(:,2))];

dvolu = wgp(ig)=xdet(Jacob);

res = Jacob\[Nxi_ ig;Neta ig];

Nx = res(1,:);

Ny = res(2,:);

if method = 0

% Galerkin

Ke = Ke + (nux(Nx’«NxtNy’«Ny) + N_ig’« (ax*Nxtay*Ny)+sigmaxN _ig’x
N ig)xdvolu;

aux = N _igxXe;

f ig = SourceTerm (aux);

fe = fe + N _ig’«(f igxdvolu);

elseif method — 1

% SUPG

Ke = Ke + (nux(Nx’«NxtNy’+«Ny) + N _ig’*(ax*Nxtay+Ny) + sigma*xN ig’x
N ig...

+tau*(ax*xNxtay*Ny) "*((ax*Nxtay«Ny)+sigmaxN _ig))*xdvolu;
aux = N _igxXe;

f ig = SourceTerm (aux);

fe = fe + (N _igttaux(ax*Nxtay*Ny)) '*(f igxdvolu);
else

% GLS

Ke = Ke + (nux(Nx’#NxtNy’«Ny) + N_ig’« (ax*Nxtay*Ny) + sigmaxN _ig’x
N ig...

+tau*(ax*Nxtay*Ny + sigmaxN ig) '« ((ax*Nxtay+Ny)+sigmaxN_ig))x*

dvolu;

aux = N_igxXe;

f ig = SourceTerm (aux);

fe = fe + (N_igttaux(ax*Nxtay«Ny)) s« (f_igxdvolu);
end

end

The term —V - (¥Vw) has not been included since we are dealing with linear shape
functions.

If we solve the fourth set of parameters (a =1, v =103 o=1, s=0)using SUPG
and GLS methods we obtain solutions which are much better than Galerkin’s solution
and do not show spurious oscillations (see figure (3)).

(a) SUPG (b) GLS

Figure 3: Results obtained using SUPG and GLS formulations for set of parameters 4

d)

Solve the problem with p =2 in I's; and p = 1 in I'y. Modify the BC in I'4 to
impose Neumann BC so that the same solution is obtained.

The results obtained for the fourth set of parameters and p = 2 in I'y and p = 1 in I'y
are depicted in figure [4

If we want to obtain the same results but imposing Neumann boundary conditions in
I'y, we first must know which are the fluxes of u in I'y that are obtained when imposing
p = 1. These values of fluxes are the Lagrange multipliers obtained when solving the
system with boundary conditions. Thus, we must store these fluxes when solving with
p=1in Ty

%Here we recover the neumann bc that shoulb be imposed in BC4 to
%get the same results that for the boundary conditions imposed in
%Ex1d using Dirichlet be
BC4 = size (nodesBC4,1) ;

BC2 = size (nodesBC2,1) ;
new neumann = zeros (BC4,2) ;
for i = 1:BC4
aux = i+BC2;
new neumann(i,1l)=nodesBC4(i);
new neumann(i,2)=multip (aux) ;
end
save (’bc2 neumann’, ’new neumann’)

And use these fluxes when solving with Neumann boundary conditions in I'4:

case 2
% 1 in nodesBC2 and Neumann in nodesBC4
% Boundary condition matrix
C = [nodesBC2, 2xones(length (nodesBC2) ,1) |;
load (’bc2 neumann’) ;
for count=1:size (nodesBC4,1)
f (nodesBC4 (count)) = f(nodesBC4(count)) — new neumann(count,2) ;
end ;

The results obtained are the same that when Dirichlet boundary conditions were applied

(see figures [4] and [5).

(c) GLS

Figure 4: Results obtained for set of parameters 4 and p =2 in 'y and p =1 in I'y.

Figure 5: Results obtained for set of parameters 4 and p = 2 in I's and Neumann in I'4.

Exercise 2

Now we include the transient term and initial boundary conditions po (x,0) = 1 (2 — x)
in 2. BC will be homogeneous Dirichlet BCp =1 in I'sandp=0 in T\y4.
The vector a (z,y) = (—x, —y).

a)

Discretize the problem above using the formulation for space that you con-
sider more appropiate among the ones described in Exercise 1. For the time
discretization use 2 of the following methods:

1. Crank-Nicholson method
2. Two step third order TG method
3. Pade approximation of order R22
State the system that has to be solved at each time step.

The time discretization schemes chosen are Crank-Nicholson (CN) method and Pade
approximation of order Ros. Both these schemes can be obtained as Pade implicit schemes
(CN is a Pade approximation of order Ry;). Implicit Pade methods can be expressed as:

Ap

Ay~ WA =wp) (1)

For Crank-Nicholson:

For RQQ:
n-‘,—%

_|r p N A _ 1
so= e o] weails 5] e
The equation that we are dealing with is:
peta-Vp—V-(vVp)+op=s
Thus:
pp=—a-Vp+V - -(vVp)—op+s (2)
Adding equation [2 into [I}

i—?—W[As—[a-V—V-(uV)—{—U]Ap]:w[s"—[a-V—V-(yV)—i—a]pn}

Thus:

%er[a.v_v.(yV)+a]Ap—WAs+w[s”—[a-V—V'(VV)+U]Pn] (3)

Two different spatial discretizations have been used: Galerkin and SUPG. The Galerkin
discretization is obtained pre-multiplicating equation |3 by a test function v and integrat-
ing by parts:

/v% dQ+/va-V(WAp) dQ+/vV-(uV (WAp)) dQ+/vaWAde:
Q Q Q Q

= /QU(WAs+'ws”) Q) — /Qva-V('wp”) dQ+/QvV - (vV (wp")) dQ2—

—/anp” dQ+/ v (WAR +wh™) dT
Q

I'n

The system of equations arising from this weak form is:
AAp=b

This system of equations must be solved at every time step and its size will be different
for Rgs and CN. This system must be subjected to the constraints added to the problem
(Lagrange multipliers for Dirichlet BC and Neumann terms added to the fluxes). If BC
or source terms (or material parameters) are time dependent, terms A and b will change
every iteration. If A does not change, we can store its LU decomposition to reduce the
time needed to solve the problem.

In order to add stabilization to the problem, we add the following term to the rhs of the
integral form:

> / P (v) R (Ap) d
Where the residual is:

A
R (Ap) :—p—Wpt—wp?IKi)ﬂLWﬁ(Ap)—W[S”—E(pn)]

The term P(v) is:
SUPG — P(v)=W (a-Vv)

The integral form for the SUPG problem will be:

/vﬂ dQ+/va-V(WAp) dQ—l—/vV-(vV(WAp)) dQ+/vaWAde
o At Q Q Q

—i—Z/PTW(a-Vv)i—?dﬁ—l—Z/eTWTW(a-Vv)(a-V—l—a—V-(VV))Ade:

= / v(WAs + ws") dQ — / va -V (wp") dQ—i—/vV - (vV (wp")) dQ2—
Q Q Q

-~ / vowp" d +/ v (WAhR +wh") dr' + Z/ W (a - Vv) ws" dQ+
Q 1—‘N e e

_i_Z/QeTWTW(a.VU)ASdQ—Z/QETW(CL.VU)w(a-V—i—U—V-(VV))Ade

The matrix 7 used is (Soulaimani and Fortin (1994), Codina (2000)):

w! 2a 4v T .
7'—|:At +<F+ﬁ+U)I‘| \%%

Initial solution

Figure 6: Initial conditions.

3

Ry Yy
Al by
NNy
VAN
e
N4
=15t V VA A S S
A A A A A ey avd
LS s s

o
o
3]
x = [
o
N

Figure 7: Velocity a.

b)

Modify the code and use it to solve the problems described above. Write the
procedure used to implement these methods.

The methods described above have been implemented for the unsteady convection-diffusion-
reaction equation with steady source term and using linear 4-node and quadratic 9-node
quadrilateral elements. First, it reads the input parameters (order of elements, mesh
size h, v,o, time step At and end time), creates the mesh and set initial and bound-
ary conditions (p = 1 in Iy and p = 0 in Ty4). The initial conditions used are
po (2,0) = 3 (2 —x) (sce figure @ We also defined the convection velocity field a (see
figure E[)

The user has the option to select which time and spatial discretization schemes use:

disp(’)

disp (’There are two integration schemes available 7)

disp (’ [0] Crank—Nicolson 7) ;

disp (’ [1] = R227);

disp(’and three methods to perform spatial discretization’)

10

disp (’ [0] = Galerkin’);

disp ("’ [1] = Galerkin/Least—Squares’);

disp (’ [2] Streamline —Upwind Petrov—Galerkin (SUPG)’);

disp(’)

d temp = cinput(’Choose a method to perform time integration = ’,0);

d _esp = cinput(’and another one for the spatial discretization = ’,0);

% Matrices for the time integration
if d temp — 0

method = °CN + 7;

W= 1/2;

w = 1;

beta = [0,1];
elseif d temp — 1

method = 'R22 + 7;

W= (1/24)«[7 —1; 13 5];

w = [1/2; 1/2];

beta = [0,1/2,1];
else

error (’Unavailable time integration scheme’)
end

The spatial discretization is implemented in files Galerkin.m and SUPG.m which create
the matrices of the system and solve it for every time step constrained to the boundary
conditions. This files can be found at the Appendix.

c)

Compute the solutions using linear elements in the time frame t € [0,¢"].
Choose t" with your own criterion to analyze the entire transient model.
Do a sensitivity analysis of the mesh dependency using linear elements and
comment on the performance. A initial discretization time of 110 is proposed.
Analyze how the solution behaves when this time discretization is changed
below and above the proposed value. Finally, comment on the computational
cost of these approaches.

The convection velocity field used (figure [7)) is larger than the ones used in Exercise one,
leading to larger Péclet number. This makes harder to obtain stabilization in the spatial
discretization of the problem.

If we wanted to work, for example, with v = 1073, ¢ = 0 and s = 0 (third set of coefficients
but without source term), then when using a mesh size h = 0.1, which is a fine mesh that
requires huge computational resources when working with personal computers, we obtain
a maximum Peclet number Pe,,,, = 18.03 and the spatial discretization of the problem
would introduce oscillations. Thus, for this set of coefficients, the spatial discretization
of the problem cannot achive stable results whitout using a very fine mesh. In order to
study a stable problem without having to use very large computational resources, the
values of v used will be larger.

First we will study the effects of h and dt for CN and Galerkin methods for v = 0.3, 0 = 0
and no source term. The results obtained for h = 0.1 (Pe,,q: = 0.6) after 3 seconds when
using 109 time steps (C' = 1) and 27 time steps (C' = 4) are depicted in figure [§ The

11

7
=

=— —

==

=

=

”

=

=

\

(c) 7 time steps (C = 15.45)

Figure 8: Results obtained for v = 0.3, 0 = 0 using CN and Galerkin’s method.

temporal evolution of the solution at the lower left corner is depicted in figure [0] As
can be seen in the results, for this Peclet number, the steady solution is obtained after
2.2 s and the combination of Galerkin and CN is able to fully solve the problem for any
Courant number or number of time steps (The results obtained for C' = 15.45 are not very
accurate since we are only using 7 time steps). The same conclusions could be obtained
for Rgs and SUPG, and agree with the fact that CN and Rgs methods are unconditionally
stable.

However, when working with larger Peclet numbers, the spatial discretization can lead
to instabilities due to the strong convection of the problem. For example, when working
with h = 0.2 and v = 0.1 (Pe = 3.6), the problem cannot be solved for any number of
time steps.

The results obtained for this problem could be improved using formulations that provide
better stabilization, such as Least-Squares or Discountinous Galerkin methods.

d)

Include quadratic elements and comment on the differences in the solutions,
if any, compared with the linear elements.

Quadratic elements have been included. To do so, they have been added to the function
‘ShapeFunc.m’ and the term ¥V -V has been added to the residual for SUPG formulation.
The results obtained when using quadratic elements for Pe > 1 (see figure are similar
to those obtained for linear elements when using SUPG formulation, but smoother. The

12

oscilations obtained for quadratic elements are smaller since we are including the diffu-

sion term in the residual and the stabilization provided by SUPG formulation becomes
consistent.

(a) 109 time steps (C' = 1) (b) 27 time steps (C = 4)

(c) 7 time steps (C = 15.45)

Figure 9: Temporal evolution at lower left’s corner for v = 0.3, ¢ = 0 using CN and
Galerkin’s method.

Solution at t=4.5 Solution at t=4.5

N

=

=

(a) Linear elements (b) Quadratic elements

Figure 10: Comparison of linear and quadratic elements for Pe = 1.8 and SUPG formu-
lation.

13

Exercise 3

We aim to analyze the Stokes and Navier-Stokes equations in the domain of
interest. Use the code available in the Virtual Learning center to compute
the finite elements approximation of these problems and answer the questions
below. Consider the following BC:

v=01in Fl, Fz, F3, F5

vy, =—1inTly

Either use one element that based on your own criteria is going to be appro-
priate, discussing why, or show the results for the different elements presented
in the Matlab code.

a)

Use the function Stokes.m to compute the solution of the Stokes problem.
The fluid you are considering is a dense fluid, such an oil, select a viscosity
that satisfies this assumption.

Describe the weak form and finite element discretization. The mesh size is
an important aspect of the quality of the solution. Use your own criterion
to explain the mesh you used. Explain why you did in one specific way and
the criteria for such a choice. Comment on the results and describe the main
properties of the velocity and pressure fields.

In order to work with a very viscous problem, we will use v such that the Reynolds

number is:
Uref Lref

v
Where v,y = 1 is the velocity at boundary I'y and L,.; = 3 is the length of the vertical
side of the cavity. A problem in which Re = 0.01 can be considered as a very viscous
problem:

Re = <<1

o UrefLref o 3

= = = 300
Re 0.01

The pde form of the stationary Stokes problem is:

~vV2u+Vp=>b
Vo=0

Premultiplicating every equation by a test function (w for velocity and ¢ for pressure)
and integrating:

—/wyvzvdﬂ—l—/wVde:/wbdQ
Q Q Q

/qudQ:O
Q

14

Applying the divergence theorem to the viscous and pressure terms:

/Vw:vadQ—/pVAwdQ:/wbdQ+/ nAt dI’
Q Q Q N

/quszO
Q

The term v can be decomposed into v = uw + vp where vp are the prescribed values of
velocity:

/Vw:VVudQ—/pVAwdQ:/wbdQ—l—/ nAtdF—/Vw:I/VUDdQ
Q Q Q v Q

/qVAu d§) = —/qVAUD ds
Q Q

This system of equations can be expressed as:

B G| |u| |b

& al[i)=1n
The problem has been solved using Taylor-Hood Q2/Q1 quadrilaterals, which uses piece-
wise continuous interpolations, linear for pressure and quadratic for velocity. This element
has been chosen because it is stable, satisfies LBB compatibility condition and exhibits
optimal quadratic convergence. A uniform mesh with mesh size of 0.1 will be used. A
non-uniform mesh with a refinement in the boundaries/vertexes of the domain could im-
prove the solution, but it was discarded due to the complication of its implementation.
The mesh size was selected after studying the results obtained for different element sizes

seeking convergence. The mesh used is depicted in figure blue for velocity and red for
pressure.

The boundary conditions imposed are v = 04n I'1,I'9,I'3,I'5, v, = —1in I'y (the right
lower and upper corners belong to I') and the pressure is defined up to a constant pg = 0
at the lower left corner. The results obtained for the velocity and pressure are depicted
in figures [12] and [I3] The main features that can be observed are the symmetry with
respect to the horizontal center line and the pressure singularities at lower and upper
right corners, which are characteristic of a leaky cavity problem. The velocity field shows
a main vortex which has its center at the middle of the domain, and the pressure field is
uniform, except for the singular corners.

15

9}

O

C}

Figure 11: Mesh for Stokes problem.

(b) Velocity field

(a) Streamlines

Figure 12: Velocity field obtained in Stokes problem.

Figure 13: Pressure field obtained in Stokes problem.

16

b)

Based on your conclusion in the previous point, use the function Navier-
Stokes.m to compute the solution of the Navier-Stokes equations using one
specific spatial discretization and type of element. Consider a physical prob-
lem with Reynolds numbers Re = 1,100, 1000,2000. Take into account this
feature and choose the remaining parameters to fulfil the requirement. Com-
ment on the results.

For every Re studied we must compute v:

U= UrefLref _ §
Re v

The problem has been solved using a tolerance tol = 10~* and a zero velocity field for the
initial solution. The results obtained for Re = 1,10, 100 and 1000 are depicted in figure
to [I8) The number of iterations needed for the different values of Re is depicted in
14

160

140

1201

100

80

60

Number of iterations

a0

20F

f
10° 10' 10° 10°
Re

Figure 14: Number of iterations needed for Re = 1,10, 100, 500 and 1000.

For Re = 2000, the problem does not converge using the methods and mesh used. This
is due to the fact that convection becomes much more important and the problem begins
to move towards turbulence; hence, it is much harder to get an steady solution for the
problem and the mesh should be refined in order to capture the small scales of the flow.
Other options to improve convergence would be to use a stabilization formulation or use
a much better initial solution: For example, we could solve the problem for Re = 1900
and then use the solution obtained as the initial guess for Re = 2000.

However, since a refinement of the mesh would require much more computational re-
sources and the utilisation of better initial guesses does not ensure convergence, I decided
to solve the problem using a transient analysis with the same mesh as before and ini-
tial solution the velocity field obtained for Re = 1000. The transient analysis has been
computed using an explicit scheme for the Chorin-Temam projection method which is a
two-step method: we first include viscous and convective terms and then add pressure
and incompressibility constraint for velocity. The results obtained for Re = 2000 are

depicted in [19

The results obtained for low values of Reynolds numbers (1 and 10) are very close to
those obtained for Stokes flow. The shape of the velocity field is almost the same and so

17

is the shape of the pressure field. However, the magnitude of the pressure decreases as v

or Re increase.

For Re = 100, the center of the main vortex tends to move downwards, but the pressure

field is similar. For Re = 1000, the solution has lost its symmetry and a secondary vortex
appears at the upper part of the domain. The pressure field shows some oscillations and

it is not as uniform as for lower Re.

(c) Pressure

Streamlines

)

Figure 15: Results for Re = 1.

b

(

(a) Velocity field

ST T T T T T T

e s~ s~ — - -,

15

(a) Velocity field

0.5

(c) Pressure

Streamlines

)

b

(

Figure 16: Results for Re = 10.

18

(c) Pressure
¢) Velocity contour
(c) y

(b) Streamlines

(b) Streamlines
Figure 17: Results for Re = 100.

C L

D T S NN

~a g
Vo !
itle = i A e
[P e e N Rl
L = ! ey =
;o > ! oy >y
/A + ! Sy -~
AT R H ' NN RS
S N SRR -
.o LA A
o Vc N A Ve
. 0 h A o
1Ta r ~ R 18 —
° '3 P ° s
o ~
o . L o
o ™ 0 [N 0 — 0 [S)
o — o

= 1000.

(d) Pressure
Figure 18: Results for Re
19

0.5 1

(a) Velocity field (b) Streamlines (c) Velocity contour

(d) Pressure

Figure 19: Results for Re = 2000.

20

26

N

Appendix: Spatial discretization for Ex 2

Galerkin.m

function Sol = Galerkin (X,IEN,Conv,nu,sigma,f,c,Accdl,bcedl ,T,s,beta,dt,
nstep , Element)

% Number of points used in the discretization
npoin = size (X,1);

i % COMPUTATION OF THE MATRICES

pospg = Element. GaussPoints;
wpg = Element.GaussWeights;
N = Element .N;

Nxi = Element.Nxi;

Neta = Element . Neta;

N2xi = Element.N2xi;

N2eta = Element.N2eta;

5 % Matrices obtained by discretizing the Galerkin weak—form
s disp (7)
- disp (’Computation of mass matrix M, obtained by discretizing the term (w,u

)7)

M = CreMassMat (X,IEN, pospg ,wpg,N, Nxi, Neta) ;

disp (’Computation of convection matrix C, obtained by discretizing the
term (w,agrad(u))’)

C = CreConvMat (X,IEN, Conv, pospg ,wpg,N, Nxi, Neta) ;

disp (’Computation of stiffness matrix K, obtained by discretizing the term

(grad(w) grad(u))’)
K = CreStiffMat (X,IEN, pospg ,wpg,N, Nxi, Neta) ;

1% Integration matrix

[n,m] = size(T);
Id = eye(n,m);

% Computation of the matrix necessary to obtain solution at each time—step:
A du =F

disp(* ")

disp (’Computation of total matrices for the time—integration scheme’)

Kt = C + nuxK + sigmax*M;

A= [];
for i = 1:n
row = [];
for j = 1:m
row = [row, Id(i,j)*M + dt«T(i,j)=*Kt];
end
A= [A; row];
end

nced = size (Acedl,1);
Aced = []; beed = [];

for i = 1:n
row = [];
for j =

row, Id(i,j)*Accdl];

21

49 end

50 Aced = [Aced; row];
51 bced = [beed; beedl |;
52 end

53

54 nccd = nx*xnced;

55 Atot = [A Aced’; Aced zeros(nced)|;
6 Atot = sparse(Atot);

58 % Factorization of matrix Atot

so disp(’ ")
6o disp(’Factorization of the matrices for the time—integration scheme’)
61 [L,U] = lu(Atot);

62 L = sparse(L);
63 U = sparse (U);

64

65 % Initial condition

66 Sol = c¢;

67 % Loop to compute the transient solution
68

6o disp(’ ")

70 disp (’Transient analysis: computation of the solution at each time step’)
1 for i=1:nstep

2 aux = dtx(—Ktxc);

~ ~

73 F=1];

74 for i =1l:n

75 F = [F; s(i)*aux];

76 end

77 F = [F;bced *0];

78 de = U\(L\F);

79 dc = reshape(dc(l:n*npoin) ,npoin ,n);
80 ¢ = c¢ + sum(dc,2);

81 Sol = [Sol c¢];

s2 end

SUPG.m

function Sol = SUPG(X,IEN, Conv,nu,sigma,f,c,Accdl,bcedl,T,s,beta,dt,nstep,
tau , Element)

3 % Number of points used in the discretization
1 npoin = size (X,1);

6 % COMPUTATION OF THE MATRICES
7 pospg = Element.GaussPoints;

s wpg = Element.GaussWeights;

9 N = Element .N;

10 Nxi = Element.Nxi;

11 Neta = Element.Neta;

12 N2xi = Element . N2xi;

N2eta = Element.N2eta;

14 h = Element . meshsize ;

16 % Matrices obtained by discretizing the Galerkin weak—form

17 disp (7)

15 disp (’Computation of mass matrix M, obtained by discretizing the term (w,u
)

) 9

22

19

]

M = CreMassMat (X,IEN, pospg ,wpg,N, Nxi, Neta) ;

o disp (’Computation of convection matrix C, obtained by discretizing the

term (w,agrad(u))’)
C = CreConvMat (X,IEN, Conv, pospg ,wpg,N, Nxi, Neta) ;
disp (’Computation of stiffness matrix K, obtained by discretizing the term
(grad (w) ,grad (u)) ')

s K = CreStiffMat (X,IEN, pospg ,wpg,N, Nxi, Neta) ;

disp (’Computation of matrix K2, obtained by discretizing the term (agrad(
w),agrad (u)+sigma-nu gradgrad(u))’)

5 K2 = CreK2Mat (X,IEN, Conv, pospg ,wpg,N, Nxi, Neta , N2xi, N2eta ,nu, sigma ,h) ;

s % Integration matrix

[n,m] = size(T);
Id = eye(n,m);
tauT = tauxT;
tauT T = tauT ' «T;
tauT s = tauT ’xs;

i if size(tau) = [1,1]

tau = tauxones(size (T));
end

% Computation of the matrix necessary to obtain solution at each time—step:
A du=F

disp (")

disp (’Computation of total matrices for the time—integration scheme’)

Kt = C + nuxK + sigmax*M;

A =[]
; for i = 1:n
row = [];
for j = 1:m
row = [row, Id(i,j)«M + dt«T(i,])=*Kt +
tauT (j,1)*C’ + dtxtauT_ T(i,]j)*K2];
end
A = [A; row];
end

nced = size (Acedl, 1) ;

56 cero = zeros (nced ,npoin);

57 Aced = []; beed = [];

ss for i = 1:n

59 row = |[];

60 for j = 1:m

61 row = [row, Id(i,j)*Accdl];
62 end

63 Aced = [Aced; row];

64 bced = [beed; beedl |;

65 end

66

67 nccd = nx*xncced;

6s Atot = [A Aced’; Accd zeros(nced) |;

69

70

-~

2

Atot = sparse (Atot);

% Factorization of matrix Atot
disp(’)

23

3 disp(’Factorization of the matrices for the time—integration scheme’)
1 [L,U] = lu(Atot);
s L =s

PSRN BN |

parse (L) ;
76 U = sparse (U);
77
78 % Initial condition
79 Sol = c¢;
g0 % Loop to compute the transient solution
st disp(’ 7)
s2 disp (’Transient analysis: computation of the solution at each time step’)
s3 for 1 = 1l:nstep
84 auxl = —dtxKtxc;
85 aux2 = —dtxK2xc;
86 F = [];
87 for i =l:n
88 F = [F; s(i)*auxl + tauT s(i)=xaux2];
89 end
90 F = |[F;bced*0];
91 de = U\(L\F);
92 dc = reshape(dc(l:n*npoin) ,npoin ,n);
93 ¢ = ¢ + sum(dc,2);
04 Sol = [Sol c¢];
95 end

24

