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1 Question 1

The matlab code for computing the velocity and pressure errors is attached in the appendix of this
report. For all the convergence plots that are plotted in this report the following values were used
for the element size, 1/10, 1/20,1,30 and 1/40. These values also corresponds to the convergence
plots presented in the literature book for the same topic.
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From the convergence plots we can see that the error plots are behaving as expected. This because
the velocity converges to the exact solution for the Q2Q1. This is due to the fact that this element
satisfy the LBB condition which allow it to deliver good solution. On the other the other the Q1Q0
does not satisfy the LBB condition hence a slight variation in the convergence plot as seen in figure
1.
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1.1 b

Solve the problem using P1P1 elements with an stabilised formulation. Check the
convergence of this approximation.
The stabilization formulation was implemented using GLS. The basic idea behind the stabiliza-
tion procedures is the enforcement of positive definiteness of the matrix problem governing the
Stokes flow in the Galerkin formulation. This is done by modifying the Galerkin weak form of
the incompressibility condition in order to render non-zero the diagonal term resulting from the
incompressiblity condition. Doing so allows for the circumventing of the inf-sup condition. Note
that generally, the weak form is modified by adding the terms coming from a minimization of a
least squares form. More detailed information about the use of GLS can be found on page 287-288
of the reference book. Nevertheless in this report we will illustrate the key points in terms of the
implementation. With respect to the functional spaces we define the following spaces for both the
weighting function w and velocity solution v.

V :=
{
w ∈H1 (Ω) | w = 0 on ΓD

}
and S :=

{
v ∈H1 (Ω) | v = vD on ΓD

}
(1.1)

Furthermore, we introduce a space of functions, denoted Q, for the pressure as Q := L2 (Ω).
Denoting that Sh and Vh be subspaces of S and V and thatQh be the subspace ofQ then the Stokes
problem to solved is stated as: Find vh ∈ Sh and ph ∈ Q, such that, for all (wh, qh) ∈ Vh ×Qh,{

a(wh,vh) + b(wh, qh) = (wh, bh) + (wh, th)ΓN
,

b(vh, qh)−
∑nel

e=1 τe(∇qh,∇ph)Ωe = −
∑nel

e=1 τe(∇qh, bh)Ωe .

For the case of linear elements, the GLS stabilization technique does not affect the weak form of
the momentun equation because terms involving second derivatives cancel. So the weak form of the
problem yields, {

a(wh,vh) + b(wh, qh) = 0,

b(vh, qh)−
∑nel

e=1 τe(∇qh,∇ph)Ωe = 0.

By using the Galerkin discretization of the weak form, one finds that the matrix system which
governs the discrete Stokes problem with GLS stabilization for linear elements assumes the following
partioned form: (

K G
GT D

)(
u
p

)
=

(
0
0

)
where K is the viscosity matrix, matrix G is the discrete gradient operator, and GT the divergence
gradient operator. All of them already implemented in the code. And finally the matrix D which
arises from the discretization of the term τe(∇qh,∇ph) and is the also known stiffness matrix:

D = A(e)D(e) ⇒ D
(e)
ij =

∫
Ωe

τe∇Ni∇Nj dΩ

The stabilization parameter is chosen as:

τe = α0
h2
e

4ν

where he is a measure of the element size and ν the viscosity parameter. The parameter α0 can be
tuned but the choice α0 = 1/3 appears to be optimal for linear elements. (See [1] page 288 ).
In appendix, there are the matlab codes pertaining to this section. Let us now show the obtained
results when velocity and pressure fields ara discretized with linear continuous elements and using
GLS as a stabilization technique.

2



-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

log10(h)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

1
0

(e
rr

)

 Convergence plot for P1P1 

 Velocity H1 error

Pressure L2 error

Both the velocity and pressure converged to a nice solutions as shown in the above figure. This
indeed shows the importance of stabilized formulation. Generally this element will have difficulties
in solving this problem if stabilization is not utilized. This is due to the fact this element does not
satisfy the LBB condition, which guarantees the uniqueness and existence of solution. Therefore,
when used without stabilization it presents a spurious node-to-node response for the pressure field.
This can ultimately affect the convergence of the solution and it will not appear like the one shown
in the above figure.
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2 Question 2

(b) Compute the solution of the Stokes problem considering (i) a structured, uniform mesh of Q2Q1

elements with 20 elements per side (ii) a structured mesh of 20x20 Q2Q1 elements refined near the
walls. Comment on the results. Describe the main properties of the velocity and pressure fields.
Are there any differences between the solutions obtained with these two meshes? Which one do you
thinks the best? Why?

(a) Mesh (b) Streamlines
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Figure 2.1: Results obtained for Q2Q1 element
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(a) Mesh (b) Streamlines
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-1500

1

-1000

-500

1

0

500

0.8
0.5

1000

0.6

1500

0.4

0.2

0 0

(d) Pressure field

Figure 2.2: Results obtained for Q2Q1 element with elements refined near the walls

As we can see by comparing between figure 2.1 and figure 2.2 both of them presents an almost
identical distribution of streamlines and the solution for the pressure field is shown to be reliable
in both figures as the element is LBB-conforming.On the other we also note the symmetric nature
of the velocity solution in both figures. Furthermore, with regards to both the velocity field and
the pressure field, we can observe that adapted mesh is able to capture better what happens in the
corners and edges. Moreover, we can see that the pressure field for adapted mesh is smoother and
more regular than the one obtained with uniform mesh.
From the results it easy to see that there is a discontinuity in the boundary conditions at the two
upper corners of the cavity. This discontinuity will greatly affect the results it is not well handled.
One way of solving this problem is mesh refinement around the affected part. Therefore the refined
a refined mesh stands a better chance of producing better results the hence it will be a good choice.
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3 Steady Navier-Stokes problem

d) The script mainNavierStokes.m can be used to solve the Navier-Stokes equations with Picard
method. In order to be able to use it, you must first write a Matlab function ConvectionMatrix.m
to evaluate the matrix arising from the discretization of the convective term

c(w,v,v∗) =

∫
Ω
w · (v∗ ·∇)vdΩ

Solve the Navier-Stokes equations using a structured mesh of Q2Q1 elements with 20 elements per
side. Consider the Reynolds numbers Re = 100; 500; 1000; 2000 and comment on the results.
In particular, discuss the number of iterations needed to achieve convergence, the evolution of the
pressure field, the position and strength of the main vortex of the velocity. Compare your results
with the ones given in literature.
The code implementation for the ConvectionMatrix.m is attached in the appendix and the results
for different Reynolds numbers are as follows.

Figure 3.1: Streamlines Figure 3.2: Pressure field

Figure 3.3: Results obtained for Q2Q1 element with elements refined near the walls with Re = 100

(a) Streamlines (b) Pressure field

Figure 3.4: Results obtained for Q2Q1 element with elements refined near the walls with Re = 500
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Figure 3.5: Streamlines
Figure 3.6: Pressure field

Figure 3.7: Results obtained for Q2Q1 element with elements refined near the walls with Re = 1000

In the table below we present the Reynolds number and the corresponding number of iterations
needed that are need to achieve the given tolerance:

Re Number of iterations

100 13
500 29
1000 35
2000 69

From this table we can see that increasing the value of the Reynolds number also increases the
number of iterations that are are needed to achieve convergence. Furthermore we can say that at
higher is Reynolds number, the convective part becomes more dominant which leads to the which
results in nonlinear and non-symmetric form of the final matrix is a situation which is difficult to
solve. Since the Q2Q1 elements are used the pressure evolution is well satisfied. This because the
Q2Q1 are LBB compliant and satisfy the compatibility condition as well. As for the pressure field
increasing the Reynolds number results in a decreased value at the upper corners. With regards
to the main vortex we note that the position of the main vortex moves towards the center of the
cavity when the Reynolds number increases. The development of a secondary vortex in the right
bottom corner of the cavity becomes progressively apparent and a third vortex appears at the lower
left corner as it can be seen in figure 3.7. Finally when we compare the results produced with the
literature (see the reference book page 312, Table6.2).based results the are similar.

Table 3.1: Comparison of results

Square cavity x1 x2

Re=100 Obtained results 0.62 0.74
Burggraf(1966) 0.62 0.74
Tuann and Olson(1978) 0.61 0.722

Re=1000 Obtained results 0.54 0.57
Ozawa(1975) 0.533 0.569
Goda(1979) 0.538 0.575
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4 Appendix

MATLAB codes

1 % This Matlab function computes erros for both velocity and pressure
2 function [errV_L2 ,errV_H1 ,errP] = ComputeError(velo ,pres ,X,T,XP,TP,

referenceElement)
3
4
5 elem = referenceElement.elemV;
6 ngaus = referenceElement.ngaus;
7 wgp = referenceElement.GaussWeights;
8 N = referenceElement.N;
9 Nxi = referenceElement.Nxi;
10 Neta = referenceElement.Neta;
11 NP = referenceElement.NP;
12 ngeom = referenceElement.ngeom;
13
14
15 errV_L2 = 0; normV_L2 = 0;
16 errV_H1 = 0; normV_H1 = 0;
17 errP = 0; normP = 0;
18 % Loop on elements
19 for ielem = 1:size(T,1)
20 % Global number of the nodes in element ielem
21 Te = T(ielem ,:);
22 TPe = TP(ielem ,:);
23 % Coordinates of the nodes in element ielem
24 Xe = X(Te(1: ngeom) ,:);
25 % Solution at the element 's nodes
26 velo_e = velo(Te ,:);
27 pres_e = pres(TPe);
28
29 % Element matrices
30 [errV_L2_e ,errV_H1_e ,errP_e ,normV_L2_e ,normV_H1_e ,normP_e] = ...
31 ElemError(velo_e ,pres_e ,Xe,ngeom ,ngaus ,wgp ,N,Nxi ,Neta ,NP);
32
33 % Add the element contribution to global error
34 errV_L2 = errV_L2 + errV_L2_e; normV_L2 = normV_L2 + normV_L2_e;
35 errV_H1 = errV_H1 + errV_H1_e; normV_H1 = normV_H1 + normV_H1_e;
36 errP = errP + errP_e; normP = normP + normP_e;
37 end
38 errV_L2 = sqrt(errV_L2)/sqrt(normV_L2);
39 errV_H1 = sqrt(errV_H1)/sqrt(normV_H1);
40 errP = sqrt(errP)/sqrt(normP);
41
42
43
44
45
46



47 function [errV_L2_e ,errV_H1_e ,errP_e ,normV_L2_e ,normV_H1_e ,normP_e] =
ElemError(velo_e ,pres_e ,Xe,ngeom ,ngaus ,wgp ,N,Nxi ,Neta ,NP)

48 %
49
50 errV_L2_e = 0; normV_L2_e = 0;
51 errV_H1_e = 0; normV_H1_e = 0;
52 errP_e = 0; normP_e = 0;
53
54
55 % Loop on Gauss points
56 for ig = 1:ngaus
57 N_ig = N(ig ,:);
58 Nxi_ig = Nxi(ig ,:);
59 Neta_ig = Neta(ig ,:);
60 NP_ig = NP(ig ,:);
61 Jacob = [
62 Nxi_ig (1: ngeom)*(Xe(:,1)) Nxi_ig (1: ngeom)*(Xe(:,2))
63 Neta_ig (1: ngeom)*(Xe(:,1)) Neta_ig (1: ngeom)*(Xe(:,2))
64 ];
65 dvolu = wgp(ig)*det(Jacob);
66 res = Jacob\[ Nxi_ig;Neta_ig ];
67 nx = res(1,:);
68 ny = res(2,:);
69
70 % Exact solution
71 pt = N_ig (1: ngeom)*Xe;
72 [u,v,u_x ,u_y ,v_x ,v_y ,p] = ExactSol(pt);
73 %
74 normV_L2_e = normV_L2_e + (u^2+v^2)*dvolu;
75 normV_H1_e = normV_H1_e + (u_x^2 + v_y^2)*dvolu;
76 normP_e = normP_e + (p^2)*dvolu;
77 % Computed solution
78 uh = N_ig*velo_e (:,1); uh_x = nx*velo_e (:,1); uh_y = ny*velo_e

(:,1);
79 vh = N_ig*velo_e (:,2); vh_x = nx*velo_e (:,2); vh_y = ny*velo_e

(:,2);
80 ph = NP_ig*pres_e;
81 % Error
82 errV_L2_e = errV_L2_e + ((u-uh)^2 + (v-vh)^2)*dvolu;
83 errV_H1_e = errV_H1_e + ( (u_x - uh_x)^2 + (v_y - vh_y)^2)*dvolu;
84 errP_e = errP_e + ( (p - ph)^2 )*dvolu;
85 end

1 function [TL,TR] = GLSMethod(XP,TP ,tau ,referenceElement)
2 % [K,G,f] = StokesSystem(X,T,XP ,TP,referenceElement)
3 % Matrices K, G and r.h.s vector f obtained after discretizing a

Stokes problem
4 %
5 % X,T: nodal coordinates and connectivities for velocity



6 % XP,TP: nodal coordinates and connectivities for pressure
7 % referenceElement: reference element properties (quadrature , shape

functions ...)
8
9 ngaus = referenceElement.ngaus;
10 wgp = referenceElement.GaussWeights;
11 NP = referenceElement.NP;
12 NPxi = referenceElement.NPxi;
13 NPeta = referenceElement.NPeta;
14
15 % Number of elements and number of nodes in each element
16 [nElem ,nenP] = size(TP);
17
18 % Number of nodes
19 nPt_P = size(XP ,1);
20
21 % Number of degrees of freedom
22 nedofP = nenP;
23 ndofP = nPt_P;
24
25 TL = zeros(ndofP ,ndofP);
26 TR = zeros(ndofP ,1);
27
28 % Loop on elements
29 for ielem = 1:nElem
30 % Global number of the nodes in element ielem
31 TPe = TP(ielem ,:);
32 % Coordinates of the nodes in element ielem
33 XPe = XP(TPe ,:);
34 % Degrees of freedom in element ielem
35
36 % Element matrices
37 [TLe ,TRe] = EleMatGLS(XPe ,nedofP ,ngaus ,wgp ,NP,NPxi ,NPeta ,tau);
38
39 % Assemble the element matrices
40 TL(TPe , TPe) = TL(TPe , TPe) + TLe;
41 TR(TPe) = TR(TPe) + TRe;
42 end
43
44 function [TLe ,TRe] = EleMatGLS(XPe ,nedofP ,ngaus ,wgp ,NP ,NPxi ,NPeta ,tau

)
45 % [TLe ,TRe] = EleMatStokes(Xe,ngeom ,nedofV ,nedofP ,ngaus ,wgp ,N,Nxi ,

Neta ,NP)
46
47 TLe = zeros(nedofP ,nedofP);
48 TRe = zeros(nedofP ,1);
49 % Loop on Gauss points
50 for ig = 1:ngaus
51 NP_ig = NP(ig ,:);
52 NPxi_ig = NPxi(ig ,:);
53 NPeta_ig = NPeta(ig ,:);



54 Jacob = [
55 NPxi_ig *(XPe(:,1)) NPxi_ig *(XPe(:,2))
56 NPeta_ig *(XPe(:,1)) NPeta_ig *(XPe(:,2))
57 ];
58 dvolu = wgp(ig)*det(Jacob);
59 res = Jacob\[ NPxi_ig;NPeta_ig ];
60 % Gradient
61 % NPx = res(1,:);
62 % NPy = res(2,:);
63
64 % NPgp = [reshape ([1;0]* NP_ig ,1,nedofP); reshape ([0;1]* NP_ig ,1,

nedofP)];
65 % Gradient
66 % NPx = [reshape ([1;0]*nx ,1,nedofP); reshape ([0;1]*nx ,1,nedofP)];
67 % NPy = [reshape ([1;0]*ny ,1,nedofP); reshape ([0;1]*ny ,1,nedofP)];
68
69 TLe = TLe + tau*(res '*res)*dvolu;
70 x_ig = NP_ig*XPe;
71 f_igaus = SourceTerm(x_ig);
72 TRe = TRe + tau*res '* f_igaus*dvolu;
73 end

1 function C = ConvectionMatrix(X,T,referenceElement ,velo)
2 % C = ConvectionMatrix(X,T,referenceElement ,velo)
3 %
4 % X,T: nodal coordinates and connectivities for velocity
5 % referenceElement: reference element properties (quadrature , shape

functions ...)
6 % velo: velocity field
7
8 elem = referenceElement.elemV;
9 ngaus = referenceElement.ngaus;
10 wgp = referenceElement.GaussWeights;
11 N = referenceElement.N;
12 Nxi = referenceElement.Nxi;
13 Neta = referenceElement.Neta;
14 ngeom = referenceElement.ngeom;
15
16 % Number of elements and number of nodes in each element
17 [nElem ,nenV] = size(T);
18
19 % Number of nodes
20 nPt_V = size(X,1);
21 if elem == 11
22 nPt_V = nPt_V + nElem;
23 end
24
25 % Number of degrees of freedom
26 nedofV = 2*nenV;
27 ndofV = 2*nPt_V;



28
29 C = zeros(ndofV ,ndofV);
30
31 % Loop on elements
32 for ielem = 1:nElem
33 % Global number of the nodes in element ielem
34 Te = T(ielem ,:);
35 % Coordinates of the nodes in element ielem
36 Xe = X(Te(1: ngeom) ,:);
37 % Velocities for the element
38 Ve = velo(Te(1: ngeom) ,:);
39 % Degrees of freedom in element ielem
40 Te_dof = reshape ([2*Te -1; 2*Te],1,nedofV);
41
42 % Element matrices
43 Ce = EleMatC(Xe,ngeom ,nedofV ,ngaus ,wgp ,N,Nxi ,Neta ,Ve);
44
45 % Assemble the element matrices
46 C(Te_dof , Te_dof) = C(Te_dof , Te_dof) + Ce;
47 end
48
49
50
51 function Ce = EleMatC(Xe ,ngeom ,nedofV ,ngaus ,wgp ,N,Nxi ,Neta ,Ve)
52 % Ce = EleMatC(Xe,ngeom ,nedofV ,ngaus ,wgp ,N,Nxi ,Neta ,NP)
53
54 Ce = zeros(nedofV ,nedofV);
55 % Loop on Gauss points
56 for ig = 1:ngaus
57 N_ig = N(ig ,:);
58 Nxi_ig = Nxi(ig ,:);
59 Neta_ig = Neta(ig ,:);
60 Jacob = [
61 Nxi_ig (1: ngeom)*(Xe(:,1)) Nxi_ig (1: ngeom)*(Xe(:,2))
62 Neta_ig (1: ngeom)*(Xe(:,1)) Neta_ig (1: ngeom)*(Xe(:,2))
63 ];
64 dvolu = wgp(ig)*det(Jacob);
65 res = Jacob\[ Nxi_ig;Neta_ig ];
66 nx = res(1,:);
67 ny = res(2,:);
68
69 % Gradient
70 Ngp = [reshape ([1;0]* N_ig ,1,nedofV); reshape ([0;1]* N_ig ,1,nedofV)

];
71 Nx = [reshape ([1;0]*nx ,1,nedofV); reshape ([0;1]*nx ,1,nedofV)];
72 Ny = [reshape ([1;0]*ny ,1,nedofV); reshape ([0;1]*ny ,1,nedofV)];
73
74 v_ig = N_ig*Ve;
75
76 Ce = Ce + Ngp '*( v_ig (1)*Nx+v_ig (2)*Ny)*dvolu;
77 end
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