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Exercise 1A

The problem is in a 1D domain since uh = f(x). Neglecting transient term, the strong form of a 1D
convection-diffusion-reaction problem is,

a
∂ρ

∂x
− ∂

∂x

(
ν
∂ρ

∂x

)
+ σρ = s

Multiplying by arbitrary weight function w and converting equation into weak form,∫
Ω

wa
∂ρ

∂x
dx−

∫
Ω

w
∂

∂x

(
ν
∂ρ

∂x

)
dx +

∫
Ω

wσρdx =

∫
Ω

wsdx

Splitting second term, by performing integration by parts,∫
Ω

wa
∂ρ

∂x
dx−

∫
ΓN+ΓD

wν
∂ρ

∂x
dΓ +

∫
Ω

∂w

∂x
ν
∂ρ

∂x
dx +

∫
Ω

wσρdx =

∫
Ω

wsdx

Since, w is arbitrary, it is chosen such that w = 0 on Dirichlet boundary (ΓD). This modifies the
equation, ∫

Ω

wa
∂ρ

∂x
dx +

∫
Ω

∂w

∂x
ν
∂ρ

∂x
dx +

∫
Ω

wσρdx =

∫
Ω

wsdx +

∫
ΓN

wν
∂ρ

∂x
dΓ

Finite element discretization, ρ ≈ ρh =
∑
Nj(x)ρj , s ≈ sh =

∑
Nj(x)sj , and Galerkin method,

wi = Ni, taking ν
∂ρ

∂x
= h,∫

Ω

Nia
∑ ∂Nj

∂x
dx +

∫
Ω

∂Ni

∂x
ν
∑ ∂Nj

∂x
dx +

∫
Ω

Niσ
∑

Nj dx

 ρj =

∫
Ω

Ni

∑
Nj dx

 sj +

∫
ΓN

NihdΓ

This can be written in matrix form (terms in respective order)

(C1 +K1 +M1)ijρj = Mijsj +

∫
ΓN

NihdΓ

Which can be further represented as,

Kρ = F

Application of Dirichlet boundary condition can be done either by substituting known ρ in above matrix
and reducing the variables, or by the eigenvalue approach. Thus, the above linear system can be solved.
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Figure 1: Case 1, Galerkin Solution, h=0.2 Figure 2: Case 1, Galerkin Solution, h=0.1

Exercise 1B

The Galerkin solution was obtained by following MATLAB code lines, with τ = 0.

Ke = Ke + (nu*(Nx’*Nx+Ny’*Ny) + N_ig’*(ax*Nx+ay*Ny) + N_ig’*sigma*N_ig)*dvolu;

aux = N_ig*Xe;

f_ig = SourceTerm(aux,example);

fe = fe + N_ig’*(f_ig*dvolu);

Because elemental matrices in weak form, are of form,

Keρe = F e

Ke = ν∇ρ · ∇w + (a · ∇ρ)w + σρw

F e = ws

The boundary conditions were given as follows,

gamma2 = find(X(:,1) ==0 & X(:,2) >=1.5);

gamma4 = find(X(:,1) ==2);

nodesDir1 = gamma2;

nodesDir0 = gamma4;

C = [nodesDir1, ones(length(nodesDir1),1);

nodesDir0, zeros(length(nodesDir0),1)];

Case 1: Galerkin Method (a=1, ν=1e-3, σ=1e-3, s=0, h=0.2)

Since, ν and σ are very small compared to a, this is a convection dominated problem. Due to the
dominant unsymmetrical C term (Na · ∇N), Galerkin solution is expected to be unstable. As per
expectations, results (Figure 1) show spurious oscillations in the solution.

One idea to reduce oscillations without changing a, ν, σ and s is to reduce mesh size (h). The Galerkin
solution with h = 0.1 (Figure 2). The amplitude of oscillations reduced with refinement in mesh, but
stability is still not achieved. From theory, it is known that Galerkin solution is stable for Peclet Num-
ber, Pe ≤ 1. Pe for h = 0.2 is 100. Even after reduction in h, Pe is 50. For stable solution, Pe = 1, h
= 2e-3. This is too small and would result in a very big system of equations. Therefore, a stabilization
method is needed for this case.
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Figure 3: Case 2, Galerkin Solution, h=0.2 Figure 4: Case 3, Galerkin Solution, h=0.2

Case 2: Galerkin Method (a=1e-3, ν=1e-3, σ=1, s=0, h=0.2)

The Peclet Number, Pe = 0.1. Therefore, Galerkin solution is expected to be stable which is also seen
from solution plot (Figure 3).

Case 3: Galerkin Method (a=1, ν=1e-3, σ=0, s=1, h=0.2)

The Peclet Number, Pe = 100. Therefore, Galerkin solution is expected to be unstable (Figure 4).
Similar to Case 1, refinement can reduce the oscillations, but again that would results in a really small
h. So in this case as well, a stabilization method is needed.

Case 4: Galerkin Method (a=1, ν=1e-3, σ=1, s=0, h=0.2)

The Peclet Number, Pe = 100. Therefore, Galerkin solution is expected to be unstable (Figure 5).
Similar to Case 1 and 3, refinement can reduce the oscillations, but again that would results in a really
small h. So in this case as well, a stabilization method is needed.

Figure 5: Case 4, Galerkin Solution, h=0.2

Since, Galerkin solution is good for Case 2, a stabilization technique is not needed for this case. But
for other 3 cases, a stabilization is required.
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Exercise 1C

To consider SUPG and GLS methods, it is important to know value of stabilization parameter, τ for
all the relevant cases (1,3 and 4). The second order accurate formula for τ is given as,

τ =
h

2a

(
1− 1

Pe
+

h

2a
σ

)−1

(1)

τCase1 = 0.101, τCase3 = 0.101 and τCase4 = 0.092. Since, all τ are very close, the weight of stabilization
term is almost same for both methods. Also, for σ = 0, GLS solution would be equivalent to that of
SUPG (for linear elements). So In case 3, both methods would give exactly same solution. Similarly, for
Case 1, where, σ ≈ 0, the solutions of SUPG and GLS would be very close. The case where stabilized
solutions would differ is case 4. Thus, if SUPG and GLS methods are to be compared, Case 4 would
be appropriate. Therefore, for this Exercise, Case 4 was chosen. (a=1, ν=1e-3, σ=1, s=0, h=0.2).

The stabilization term for all methods is of the form (at elemental level),∫
e

P (w)τR(ρ) dΩ

Where, P (w) differs from method to method, stabilization parameter τ is given by (1) and R(ρ) is the
residual of PDE. Since,the stabilization term contains product with residual, it ensures consistency of
method.

SUPG Method

For SUPG method, P (w) = a ·∇w and R(ρ) = a ·∇ρ−∇· (ν∇ρ) +σρ−s. Since, elements are linear,
during discretization (ρ = ρh), the term, ∇ · (ν∇ρ) in residual would be 0, since it contains second
derivatives of ρh which are zero. Thus, R(ρ) = a · ∇ρ+ σρ− s = L(ρ)− s. Therefore, the weak form
of PDE at elemental level (with stabilization term) becomes,∫
Ωe

wa · ∇ρdΩ +

∫
Ωe

ν∇w · ∇ρ dΩ +

∫
Ωe

wσρdΩ +

∫
Ωe

(a · ∇w)τL(ρ) dΩ =

∫
Ωe

wsdΩ +

∫
Ωe

(a · ∇w)τs dΩ

Note that the Neumann term is not considered here, since while assembling the internal fluxes will
get canceled and global boundary fluxes would be added to the global matrix directly after assembly.
Combining terms under one integral,∫

Ωe

[wa · ∇ρ+ ν∇w · ∇ρ+ wσρ+ τ(a · ∇w)(a · ∇ρ+ σρ)] dΩ =

∫
Ωe

[w + τ(a · ∇w)] s dΩ

This equation after discretization (ρ = ρh), using, Galerkin approximation, wi = Ni, and using same
shape functions for source term s, the terms in above equation are expressed as follows,

wa · ∇ρ = N ig’*(ax*Nx+ay*Ny)

ν∇w · ∇ρ = nu*(Nx’*Nx+Ny’*Ny)

wσρ = N ig’*sigma*N ig

τ(a · ∇w)(a · ∇ρ+ σρ) = tau*(ax*Nx+ay*Ny)’*(ax*Nx + ay*Ny + N ig*sigma)

[w + τ(a · ∇w)]s = (N ig+tau*(ax*Nx+ay*Ny))’*(f ig)

Therefore, the completed MATLAB code is,
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Ke = Ke + (N_ig’*(ax*Nx+ay*Ny) + nu*(Nx’*Nx+Ny’*Ny)+ N_ig’*sigma*N_ig+...

+tau*(ax*Nx+ay*Ny)’*(ax*Nx + ay*Ny + N_ig*sigma))*dvolu;

aux = N_ig*Xe;

f_ig = SourceTerm(aux,example);

fe = fe + (N_ig+tau*(ax*Nx+ay*Ny))’*(f_ig*dvolu);

GLS Method

For GLS method, P (w) = a · ∇w −∇ · (ν∇w) + σw and R(ρ) = a · ∇ρ−∇ · (ν∇ρ) + σρ− s. Since,
elements are linear, during discretization (ρ = ρh), the term, ∇· (ν∇ρ) in residual would be 0, since it
contains second derivatives of ρh which are zero. Thus, R(ρ) = a ·∇ρ+σρ−s = L(ρ)−s. Also, during
Galerkin approximation, wi = Ni, second derivatives of w would be zero. Thus, P (w) = a · ∇w + σw
Therefore, the weak form of PDE at elemental level (with stabilization term) becomes,∫

Ωe

wa · ∇ρdΩ +

∫
Ωe

ν∇w · ∇ρ dΩ +

∫
Ωe

wσρdΩ +

∫
Ωe

(a · ∇w + σw)τL(ρ) dΩ =

∫
Ωe

wsdΩ +

∫
Ωe

(a · ∇w + σw)τs dΩ

Note that the Neumann term is not considered here, since while assembling the internal fluxes will
get canceled and global boundary fluxes would be added to the global matrix directly after assembly.
Combining terms under one integral,∫
Ωe

[wa · ∇ρ+ ν∇w · ∇ρ+ wσρ+ τ(a · ∇w + σw)(a · ∇ρ+ σρ)] dΩ =

∫
Ωe

[w + τ(a · ∇w + σw)] s dΩ

This equation after discretization (ρ = ρh), using, Galerkin approximation, wi = Ni, and using same
shape functions for source term s, the terms in above equation are expressed as follows,

wa · ∇ρ = N ig’*(ax*Nx+ay*Ny)

ν∇w · ∇ρ = nu*(Nx’*Nx+Ny’*Ny)

wσρ = N ig’*sigma*N ig

τ(a · ∇w + σw)(a · ∇ρ+ σρ) = tau*(ax*Nx+ay*Ny+sigma*N ig)’*(ax*Nx + ay*Ny + N ig*sigma)

[w + τ(a · ∇w + σw)]s = (N ig+tau*(ax*Nx+ay*Ny+sigma*N ig))’*(f ig)

Therefore, the completed MATLAB code is,

Ke = Ke + (N_ig’*(ax*Nx+ay*Ny) + nu*(Nx’*Nx+Ny’*Ny)+ N_ig’*sigma*N_ig+...

+tau*(ax*Nx+ay*Ny+sigma*N_ig)’*(ax*Nx + ay*Ny + N_ig*sigma))*dvolu;

aux = N_ig*Xe;

f_ig = SourceTerm(aux,example);

fe = fe + (N_ig+tau*(ax*Nx+ay*Ny+sigma*N_ig))’*(f_ig*dvolu);

Results

As expected, the solutions of both SUPG (Figure 6)and GLS (Figure 7)are free of spurious oscillations.
despite the difference in σ the solutions are very close to each other. The maximum difference between
the solutions is 0.03 and it occurs at node 78 which has coordinates (0,1.4) . SUPG solution = 0.23,
GLS solution = 0.20. The GLS solution is lower than that of SUPG at this node.

It is an expected result, since in case of Galerkin method, the solution at this node is -0.44. Comparing
both SUPG and GLS, for linear elements (and a constant positive reaction), GLS performs exactly like
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Figure 6: Case 4, SUPG Solution, h=0.2 Figure 7: Case 4, GLS Solution, h=0.2

SUPG with the Galerkin term weighted (1 + στ) times more. This implies that the oscillations due to
Galerkin are a little more amplified in GLS compared with SUPG. Therfore, GLS solution has to lie
between SUPG and Galerkin which is exactly what has been observed.

Exercise 1D

Case 4 (a=1, ν=1e-3, σ=1, s=0, h=0.2) was solved using SUPG, but with new BCs. The new BCs
were applied as follows,

nodesDir2 = gamma2;

nodesDir1 = gamma4;

% Boundary condition matrix

C = [nodesDir2, 2*ones(length(nodesDir2),1);

nodesDir1, 1*ones(length(nodesDir1),1)];

The solution of Dirichlet problem was obtained and the flux was found at the post-processing stage using
following equation, where K is global stiffness matrix (including all nodes), Temp contains Dirichlet
solution, f is the source term matrix for all nodes.

flux = K*Temp-f;

The value of flux at Γ4 was stored to be used fro Neumann problem. The BCs for Neumann problem
were applied as follows,

nodesDir2 = gamma2;

% Boundary condition matrix

C = [nodesDir2, 2*ones(length(nodesDir2),1)];

Since, Γ4 is a Neumann BC now, it has been excluded from the boundary condition matrix. The fluxes
at Γ4 were applied to the system by adding them to f using following equation,

f(gamma4) = f(gamma4) + flux;

The solution of Dirichlet (Figure 8) and Neumann (Figure 9) was found to match. The maximum
absolute difference between solutions was found to be 0.0006 which occurs at node 176 which has
coordinates (2,3).

A similar procedure was followed for GLS method. The solution of Dirichlet (Figure 10) and Neumann
(Figure 11) was found to match. The maximum absolute difference between solutions was found to be
0.0005 which occurs at node 176 which has coordinates (2,3).
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Figure 8: Case 4, SUPG Solution, Dirichlet Figure 9: Case 4, SUPG Solution, Neumann

Figure 10: Case 4, GLS Solution, Dirichlet Figure 11: Case 4, GLS Solution, Neumann
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Exercise 2A

Case 4 of Exercise 1 is continued further (all parameters are same except convective velocity). It is
important to note here that convective velocity is not divergence free. Therefore, a general form of
Convection-Diffusion-Reaction (CDR) equation needs to be used for deriving the discretization. SUPG
formulation has been used for space discretization. All parameters except convective velocity are as-
sumed to be constant in the domain and taken out of integration whenever necessary.

SUPG-Crank Nicolson

The strong form of CDR equation (2) and time marching algorithm for θ methods (3) are as follows,

ut = −∇ · (au) + ν∇2u− σu (2)

P

∆t
= θPt + unt (3)

The stabilization term would be added, once the weak form is obtained. P is defined as un+1 − un
where the superscript indicates time step. Multiplying (3) by weight function w, and converting in
integral form, (Integrals signs are not written unless they are on boundaries)

w
P

∆t
= wθPt + wunt

The strong form of CDR can be written in difference form as follows,

Pt = −∇ · (aP ) + ν∇2P − σP

Substituting Pt and unt in equation,

w
P

∆t
= wθ(−∇ · (aP ) + ν∇2P − σP ) + w(−∇ · (aun) + ν∇2un − σun)[

w
P

∆t

]
= − [θw∇ · (aP )] +

[
θwν∇2P

]
− [θwσP ]− [w∇ · (aun)] +

[
wν∇2un

]
− [wσun] (4)

The terms in square brackets would be addressed one by one. Before proceeding it is necessary to
notice the structure of various matrices defined in MATLAB program. These will be used to simplify
and represent the individual terms in (4). The boundary was divided into two parts, outflow (defined
by a · n > 0 and ’inflow + no flow’ defined as a · n ≤ 0. The definitions of matrices are as follows.

M = Ni*Nj

K = a grad Ni * a grad Nj

C = Ni * grad Nj

R1 = SUPG correction Term 1 (coeff of solution variable)

R2 = SUPG correction Term 2 (coeff of u^n)

KS = grad Ni * grad Nj

Mout = (a.n) Ni Nj (on Outflow)

Cout = (a.n) Ni (a.grad Nj) (on outflow)

Min = (a.n) Ni Nj (on Inflow or zero flow)

Cin = (a.n) Ni (a.grad Nj) (on Inflow or zero flow)

CoutN = Ni (n. grad Nj) (on Outflow)

CinN = Ni (n. grad Nj) (on inflow or no flow)

Going back to equation, The terms are solved as follows, terms P and un on RHS indicate the vector
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of nodal values of respective quantities

1 : w
P

∆t
=
M

dt
P

2 : −θw∇ · (aP ) =− θ∇ · (waP ) + θ(∇w · a)P

=− θ
∫
Γ

(a · n)wP + θ(∇w · a)P = −θ(Mout −Min − CT )P

3 : θwν∇2P =θν

∫
Γ

w(n · ∇P )− θν(∇w ·∇P ) = θν(Cout − Cin −KS)P

4 : −θσwP =− σθMP

5 : −w∇ · (aun) =−∇ · (waun) + (∇w · a)un

=−
∫
Γ

(a · n)wun + (∇w · a)un = −(Mout −Min − CT )un

6 : wν∇2un =ν

∫
Γ

w(n · ∇un)− ν(∇w ·∇un) = ν(Cout − Cin −KS)un

7 : −σwun =− σMun

Combining all the terms together,

P

(
M

dt
+ θ(Mout −Min)− θCT − θν(Cout − Cin) + θνKS + θσM

)
=

un
(
−(Mout −Min) + CT + ν(Cout − Cin)− νKS − σM

)
(5)

This can be written as follows,

AP = Bun

Since, un is known and so are A and B. Thus P can be obtained by solving the above system of linear
equations. Thus un+1 can be obtained using the relation, un+1 = un + P . This formulation does not
include the stabilization term yet, which will be added now. In the strong form, the stabilization term
would appear as follows,

ut = −∇ · (au) + ν∇2u− σu+ Sstrong

Using the stabilization term form for SUPG and using the above definition of residual,

Stable =

∫
∇ · (aw)τ(Rn+1 −Rn)

Rn+1 = un+1
t +∇ · (aun+1)− ν∇2un+1 + σun+1

Rn = unt +∇ · (aun)− ν∇2un + σun

The residual can be written as,(integration sign not written)

Stable =∇ · (aw)τ(Pt +∇ · (aP )− ν∇2P + σP )

Using the algorithm for time marching of Crank Nicolson,

Pt =
P

θ∆t
− unt

θ
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Substituting back and expanding unt , R1 is stabilization term to be added to A matrix and R2 is
stabilization term to be subtracted from B matrix. Also, the stabilization terms can be directly
integrated without converting into weak form.

R1 =∇ · (aw)τ

(
P

θ∆t
− ν∇2P +∇ · (aP ) + σP

)
R2 =∇ · (aw)

τ

θ

(
−ν∇2un +∇ · (aun) + σun

)
The stabilization parameter defined for θ methods is given as ,

τ =

(
1

θ∆t
+

2|a|
h

+
4ν

h2
+ σ

)−1

It is important to note that since a changes within the domain, τ has to be calculated on elemental
level. Assuming linear elements, thus the diffusive terms would vanish. Also, noting that ∇ · (aw) =
(∇ · a)(w) +∇w · a, and for the given field in the problem, ∇ · a = −2. Using these relations,

R1 = (−2N + a · ∇N)τ

(
N

θ∆t
+ a · ∇N − 2N +Nσ

)
R2 = (−2N + a · ∇N)

τ

θ
(a · ∇N − 2N +Nσ)

Therefore, the new equations become,

(A+R1)P = (B −R2)

Exercise 2B-2C

The following subroutines calculate the quantities mentioned in previous section. (Crank Nicolson)

%operations on convection

a = N_ig*Conve; ax = a(1); ay = a(2);

aGradN = ax*Nx + ay*Ny;

GradN = [Nx;Ny];

speed = sqrt(a(1)^2+a(2)^2);

%standard martices calculation

KSe = Ke + GradN’*GradN*dvolu;

Ce = Ce + N_ig’*aGradN*dvolu;

Ke = Ke + aGradN’*aGradN*dvolu;

Me = Me + N_ig’*N_ig*dvolu;

%stabilization terms

tau = (1/theta/dt+2*speed/h+4*nu/h/h+sigma)^-1;

P = (-2*N_ig+aGradN);

R1e = R1e + P’*tau*(N_ig/theta/dt -2*N_ig + aGradN + sigma*N_ig)*dvolu;

R2e = R2e + P’*tau/theta*(-2*N_ig + aGradN + sigma*N_ig)*dvolu;

The solver has been implemented as follows which solves the system indicated in the previous section.

A = M/dt+theta*(Mout-Min)-theta*C’+sigma*theta*M-nu*theta*(CoutN-CinN)+nu*theta*KS+R1;

B = -(Mout-Min)+C’-sigma*M+nu*(CoutN-CinN)-nu*KS-R2;

for n=1:1:nStep

Ktot = [A,ADir.’;ADir, zeros(nDir,nDir)];

Ftot = [B*u(:,n);bDir];

Soltot = Ktot\Ftot;

u(:,n+1) = u(:,n) + Soltot(1:size(A,1));

end
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Figure 12: Initial Condition Figure 13: Velocity Plot, Mesh Plot

Figure 14: Solution at tEnd, No Stabilization Figure 15: Solution at tEnd, SUPG

The given initial and boundary conditions have been implemented (Figure 12), h = 0.2 was used for
mesh (Figure 13) and convection velocity vectors are plotted (Figure 13).

Exercise 2D

With the parameters (h = 0.2, tEnd = 0.75, nStep = 110, ν = 1e − 3, σ = 1, θ = 0.5,method = CN)
simulation was run, both with and without stabilization to observe difference. The solution plots at
end time are shown in Figure 14 and Figure 15.

Solutions indicate the fact that stabilization technique are performing as per expectation. The min-
imum value of u throughout the simulation was -0.7644 without stabilization and it became -0.6425
after stabilization. Also, the maximum value of u remain unaffected when compared with the change
in minimum (2.338 with stabilization and 0.3433 without it). This indicates that the stabilization
technique has reduced the noise (e.g. negative u values) without affecting the maxima.

The following plots show SUPG solution at different times to notice its transient behavior. The behavior
makes sense, since the convective velocity points towards the origin. So everything should move towards
origin. Since, there is not outflow, there will be accumulation of u near origin which is observed too.
Since, this is a convection-reaction dominated problem, motion of peaks can ob observed from the plots.
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Figure 16: SUPG-CN, Time = 0 Figure 17: SUPG-CN, Time = 0.25

Figure 18: SUPG-CN, Time = 0.5 Figure 19: SUPG-CN, Time = 0.75
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Figure 20: SUPG-CN, Time = 0.75, h = 0.5 Figure 21: SUPG-CN, Time = 0.75, h = 0.2

Figure 22: SUPG-CN, Time = 0.75, h = 0.1

Figure 23: SUPG-CN, Mesh Sensitivity

Mesh Size Sensitivity

The case was simulated for 3 different mesh sizes, (h=0.5, 0.2 and 0.1). Figure 20 to Figure 22 show
the solution at end time. Maximum and minimum values of u were found to be very insensitive to-
wards mesh size. Figure 23 plots the maximum and minimum value of u as a function of size of
matrix to be inverted (DOF+Dirichlet). Even though minimum value of u was found to increase (ab-
solute value) substantially when mesh size was changed from h=0.5 to h=0.2, this could be to due to
fact, that h=0.5 mesh is very stiff compared to h=0.2 thus it resists more, resulting in less value of u.
Overall, insensitivity towards mesh indicates that the stabilization techniques are working well in space.

Time Step Sensitivity

The case was simulated for 3 different time steps, (nStep=55, 110 and 220). A constant mesh size
of h=0.2 was used. Figure 24 to Figure 26 show the solution at end time. Maximum and minimum
values of u were found to be very insensitive towards mesh size. Figure 23 plots the maximum and
minimum value of u as a function of time steps. Overall, insensitivity towards time steps indicates that
the stabilization techniques and time marching algorithm are working well.

Computational Time Comparison

13



Figure 24: SUPG-CN, h = 0.2, steps = 55 Figure 25: SUPG-CN, h = 0.2, steps = 110

Figure 26: SUPG-CN, h = 0.2, steps = 220

Figure 27: SUPG-CN,Time Step Sensitivity
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Figure 28: SUPG-CN,Time vs nSteps Figure 29: SUPG-CN,Time vs DOFs

Calculation time was recorded for all the above cases. It has been observed that at same DOFs, increas-
ing the timesteps does not add much to the calculation time.(This included only the solution time). But
increasing DOFs at constant timestep adds a significant amount of time to the overall computation.
This implies that maximum time needed in the algorithm is used in performing matrix calculation.
Thus, a spatial discretization should be as course as possible (without compromising the quality of
solution), on the other hand, timesteps do not add much to the computational time, but if matrices
are stored at all time points, it would generate a significant amount of data.

Summary of Results

Following tables summarizes the recorded observations. First set of values were generated for a constant
timesteps = 110, and mesh size was varied. The second set was obtained at a constant mesh size of
h=0.2, but with variable timesteps.

Mesh Size (h) DOFs umax umin time (s)

0.5 46 2.2729 -0.952 0.326432

0.2 200 2.3338 -0.55 1.212877

0.1 698 2.1797 -0.46 14.965806

Timesteps DOFs umax umin time (s)

55 200 2.3289 -0.5217 1.222386

110 200 2.3338 -0.55 1.212877

220 200 72.3378 -0.5763 1.667751

Galerkin-TG3-2S

A convection dominated problem can be written as follows,

ut = −∇ · (au)

The TG3-2S algorithm can be written as follows,

up = un +
1

3
∆tunt + α(∆t)2untt

un+1 = un + ∆tunt + 0.5(∆t)2uptt

All boundary fluxes are zero, since on dirichlet inlet, w = 0, ΓN = 0, (a ·n = 0) on outflow boundaries.
Therefore, to reduce the terms in the final expression, boundary integrals are directly put equal to 0
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and are not included in the calculation. Also, index notation is used to expand expressions.

utt = aj,jai,iu+ 2ajai,iu,j + ajaiu,ij

Weak form of the predictor step,

Mup = Muu + CTun + wuntt

The last term,

wuntt = aj,jai,iuw + 2ajai,iu,j + ajaiu,ij

= 4Mun + 4CTun − 8Mun + (4M − 2CT −K)un

The above final step has been written after quite a bit vector and tensor calculations in index notations.
After combining all the terms, the predictor step can rewritten as follows,

Mup = Mun +
1

3
∆tCTun + α(∆t)2(2CT −K)un

A1u
p = B1u

n +B2u
n +B3u

n

Similarly, the corrector step can be written as,

Mun+1 = Mun + ∆tCTun + 0.5(∆t)2(2CT −K)up

A1u
p = B1u

n +B2u
n +B3u

p

Thus, the system can be solved. This has been implemented as follows,

alpha = 1/9;

A1 = M;

B1 = M;

B2 = (C’);

B3 = (2*C’-K);

for n=1:1:nStep

%predictor step

B = B1*u(:,n)+B2*dt/3*u(:,n)+B3*alpha*dt*dt*u(:,n);

A = A1;

Ktot = [A,ADir.’;ADir, zeros(nDir,nDir)];

Ftot = [B;bDir];

Tempsol = Ktot\Ftot;

up = Tempsol(1:size(A,1));

%corrector step

B = B1*u(:,n) + B2*dt*u(:,n) + B3*dt*dt/2*up;

Ktot = [A,ADir.’;ADir, zeros(nDir,nDir)];

Ftot = [B;bDir];

Tempsol = Ktot\Ftot;

u(:,n+1)= Tempsol(1:size(A,1));

end

However, a care must be taken while imposing the BC for this problem, since the solver is not in the
incremental form, the BC for Γ2 should be 1 instead of 0 (0 is case of incremental solver since u = const
=⇒ ∆u = 0). Note the implementation of this method currently only supports Galerkin formulation
and the written algorithm can only solve pure convection problems.

16



Figure 30: TG3-2S Solution

Results - Galerkin - Pure Convection - TG3-2S

To validate the correctness of the algorithm written so far (even though it is far for being complete),
it is tested for a pure convection problem. THe parameters used are (h = 0.2, tEnd = 0.75, nStep =
110,method = TG3− 2S, stabilization = none) The solution is shown here,

As expected, due to lack of stabilization in space, the method is generating some spurious oscillations.
But the transport phenomenon is captured quite correctly.

Exercise 3A

The boundary conditions were modified in order to impose the given Dirichlet BC. Also, the corner
nodes were added to the flow boundary, so that a leaky cavity problem is obtained, thus the pressure
singularities at those corner points would come into picture. For the stokes problem, element type
Q2Q1 was chosen due to the following reasons,

1. Q1P0 and Q1Q1 do not satisfy the LBB stability condition.
2. Mini element does satisfy the LBB condition, but the convergence is linear, and an element with a
quadratic convergence behavior exists. For example, Q2Q1 has a quadratic convergence.
3. Crouzeix-Raviart element is almost as good as Q2Q1, but due to a pressure singularity, the most
accurate description of pressure behavior is needed. Q2Q1 has a bilinear continuous pressure variation
whereas Crouzeix-Raviart element has a discontinuous pressure variation. So, Q2Q1 would be able to
capture the pressure variation effects more correctly, due to the continuous pressure variation.

A typical absolute viscosity of olive oil is 0.081 Pa.s and density is 800 Kg/m3. Therefore, the kinematic
viscosity of 1.0125E-4 was used.

The weak form of the stationary stokes problem is as follows subject to boundary conditions,∫
Ω

∇w : ν∇vdΩ−
∫
Ω

p∇ ·wdΩ =

∫
Ω

w · bdΩ

∫
Ω

q∇ · vdΩ = 0

The first equation is obtained from the momentum conservation equation and the second is from mass
conservation. The first term in the equation is the viscous bilinear term. Second term is pressure term
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Figure 31: Pressure Plot, Q2Q1, nx=10, ny=15
Figure 32: Pressure Plot, Top View, Q2Q1,
nx=10, ny=15

and the term on RHS arises due to body forces (volumetric forces). Also, since w is arbitrary, it is
chosen to be zero on Dirichlet BC.

The finite element discretization is as shown below,[
K G
GT 0

] [
u
p

]
=

[
f
h

]
Where, the individual matrices are given as follows,

K =

∫
Ω

∇w : ν∇vdΩ

G = −
∫
Ω

p∇ ·wdΩ

GT =

∫
Ω

p∇ · udΩ

f = (w, b) + (w, t)ΓN
− a(w,vD)

h = −b(vD, q)

Mesh Size

After a trial run with perfect square element with size h=0.2, pressure plot are shown in Figure 32
and Figure 31. Two things are note from the solution plot. First, the different between maximum and
minimum pressure was 0.0056. Second, the pressure gradient in Y direction is almost same as that in X
direction. Therefore, to capture the pressure gradient correctly, the element shape should be as square
as possible.

After meshing with sizes h=0.15,0.12 and 0.1, the difference between the maximum and minimum
pressure was found to be 0.0079, 0.0097 and 0.0113 were observed. This indicates that refinement
is assisting in reaching the singularity. Also, apart from the corners, pressure is almost non-varying.
Therefore, an option of adaptive refined mesh was considered.

To compare effect of adaptive meshing, same h=0.1 was used for both non-adapted mesh and adapted
mesh. The pressure difference in adaptive mesh was 0.2191 and that in non adapted mesh was 0.0113.
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Figure 33: Mesh Plot, Q2Q1, Standard Mesh Figure 34: Mesh Plot, Q2Q1, Adaptive Mesh

Figure 35: Pressure Plot, Q2Q1, Standard Mesh Figure 36: Pressure Plot, Q2Q1, Adaptive Mesh

So adaptive mesh gave better results in terms of pressure but in terms of velocity, the plots are far from
accurate. Therefore, adaptive meshing is useful in this case, only when pressure needs to be calculated,
otherwise standard meshing is giving better results. Total DOFs = 6056.

Results

The comments are based on the solution plots shown above for standard meshing since, this approach
was able to all variations quite correctly. The following observations/comments are made.

1. Since, the fluid at the boundary x=2 is flowing in -Y direction, the fluid in the cavity would circulate
in the clockwise direction when looked from above.
2. Due to direction of circulation and boundary flow direction, the pressure at point (2,0) is high and
pressure at (2,3) is low.
3. The flow predicted in point 1 is confirmed in velocity plot (X direction). Also, due to symmetry
about central axis, the velocity distributions (magnitude wise) are symmetric.
4. Due to no-slip condition at boundaries, the velocity both in X and Y direction is zero at the
stationary boundaries. It matches the velocity of boundary along x=2 again due to no-slip
5. Since, pressure gradient is proportional to the viscosity, increasing viscosity results in the increases
the difference between the maximum and minimum pressure values.(0.0557 at given viscosity, 0.5569
at 10 times the viscosity)

19



Figure 37: velocity X Plot, Q2Q1, Standard Mesh Figure 38: Velocity X Plot, Q2Q1, Adaptive Mesh

Figure 39: velocity Y Plot, Q2Q1, Standard Mesh Figure 40: Velocity Y Plot, Q2Q1, Adaptive Mesh
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Figure 41: Mesh Plot, Q2Q1, Navier Stokes Figure 42: Velocity X Plot, Q2Q1, Navier Stokes

Figure 43: Velocity Y Plot, Q2Q1, Navier Stokes Figure 44: Pressure Plot, Q2Q1, Navier Stokes

Exercise 3B

Since, velocity and Re is given and cannot be changed, ν has to be changed. It was observed that
Navier Stokes fails to converge, for Re = 1000 and Re = 2000. This could be true since around this
value of Re, the flow does not remain laminar and inertial terms start to dominate over the viscous
terms. So stokes solution cannot be reproduced with high Re.

The solution for Re=1, is shown as follows. The pressure difference was found to be 458.6746. To
compare this with Stokes solution, nu = 1 was substituted in stokes equation to check. For same
mesh size (h=0.2), the pressure difference in stokes was 229.3360 which is considerable less compared
to Navier Stokes.
The Navier stokes solution at Re = 30, is shown below,

Iterations Comparison

The mesh size of h=0.2 was used with Q2Q1 element. Following table indicates the variation of number
of iterations needed vs Re.
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Figure 45: Velocity X Plot, Q2Q1, Navier Stokes

Figure 46: Velocity Y Plot, Q2Q1, Navier Stokes Figure 47: Pressure Plot, Q2Q1, Navier Stokes
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Re Iterations

1 2

10 7

20 11

30 47

Pressure Evolution

Following table indicates the variation of maximum pressure and minimum pressure value. But the
location of maximum pressure was found to remain same. Form the values it is evident that as Re
increases, the problem no longer remains symmetric. Also, the value of the pressure decreases signifi-
cantly as Re increases.

Re Pmax Pmin

1 226.229 -232.4456

10 2.8846 -1.9494

20 1.3811 -0.3466

30 1.1114 -0.1545

Strength of Velocity

The plots for different magnitude of velocity are shown. It is observed that as Re increases, the circular
current that traverse in the domain, tend to take a shorter route, thus the position in the domain where
the speed is high moves closer and closer to corner at (2,0). THis generates a low pressure at (0,3) and
also since, the connection moves away from the corner at (2,3), pmin increases.

Another interesting phenomenon can be seen in the streamlines plot. some fluid moves in the other
direction due to lesser pressure region generation at corner (0,3).

Figure 48: |a|, Re=1 Figure 49: |a|, Re=10

23



Figure 50: |a|, Re=20 Figure 51: |a|, Re=30

Figure 52: Streamlines, Re=1 Figure 53: Streamlines, Re=10

Figure 54: Streamlines, Re=20 Figure 55: Streamlines, Re=30

THE END

24


